Patents by Inventor Michael A. Webb

Michael A. Webb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11830983
    Abstract: Electrolyte solutions including at least one anhydrous fluoride salt and at least one non-aqueous solvent are presented. The fluoride salt includes an organic cation having a charge center (e.g., N, P, S, or O) that does not possess a carbon in the ?-position or does not possess a carbon in the ?-position having a bound hydrogen. This salt structure facilitates its ability to be made anhydrous without decomposition. Example anhydrous fluoride salts include (2,2-dimethylpropyl)trimethylammonium fluoride and bis(2,2-dimethylpropyl)dimethylammonium fluoride. Combining these fluoride salts with at least one fluorine-containing non-aqueous solvent (e.g., bis(2,2,2-trifluoroethyl)ether; (BTFE)) promotes solubility of the salt within the non-aqueous solvents. The solvent may be a mixture of at least one non-aqueous, fluorine-containing solvent and at least one other non-aqueous, fluorine or non-fluorine containing solvent (e.g., BTFE and propionitrile or dimethoxyethane).
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: November 28, 2023
    Assignees: California Institute of Technology, Honda Motor Co., Ltd.
    Inventors: Simon C. Jones, Victoria K. Davis, Christopher M. Bates, Nebojsa Momcilovic, Brett M. Savoie, Michael A. Webb, Thomas F. Miller, III, Robert H. Grubbs, Christopher Brooks, Kaoru Omichi
  • Patent number: 11658588
    Abstract: A piezoelectric energy harvester system for collecting kinetic energy is provided, wherein the kinetic energy is converted into electrical energy, and wherein at least a portion of the converted electrical energy is utilized to operate a load. The system comprises an energy input portion and an energy harvesting portion. The energy input portion includes an input member configured to be actionable by an outside force. The energy harvesting portion includes a capture member, a sprocket portion, and a piezoelectric energy harvester. The capture member is adapted for receiving mechanical input from the input member. The sprocket portion is disposed for movement with the capture member. The sprocket portion includes at least one radially disposed sprocket actuator configured for making contact with and exciting the piezoelectric energy harvester. The piezoelectric energy harvester is excited by the contact to produce the kinetic energy.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: May 23, 2023
    Assignee: Hanchett Entry Systems, Inc.
    Inventors: Michael A. Webb, Leland J. Hanchett, Jr., Scott Sullivan
  • Patent number: 11398645
    Abstract: Processes and reaction mixtures including non-aqueous solvent mixtures are presented. Non-aqueous solvent mixtures including fluoride salt and non-aqueous solvent combinations are provided that possess high fluoride ion concentrations useful for a range of applications, including organic synthesis. Further non-aqueous solvent mixtures are provided including a salt possessing a non-fluoride anion and a non-aqueous solvent that, when contacted with aqueous fluoride-containing reagents, extract fluoride ions to form non-aqueous fluoride-ion solutions possessing high fluoride-ion concentrations. The salts include an organic cation that does not possess a carbon in the ?-position or does not possess a carbon in the ?-position having a bound hydrogen. This salt structure facilitates its ability to be made anhydrous without decomposition. Example anhydrous fluoride salts include (2,2-dimethylpropyl)trimethylammonium fluoride and bis(2,2-dimethylpropyl)dimethylammonium fluoride.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: July 26, 2022
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Simon C. Jones, Victoria K. Davis, Christopher M. Bates, Nebojsa Momcilovic, Brett M. Savoie, Michael A. Webb, Thomas F. Miller, III, Robert H. Grubbs, Jennifer M. Murphy
  • Patent number: 11069921
    Abstract: Electrolyte solutions including at least one anhydrous fluoride salt and at least one non-aqueous solvent are presented. The fluoride salt includes an organic cation having a charge center (e.g., N, P, S, or O) that does not possess a carbon in the ?-position or does not possess a carbon in the ?-position having a bound hydrogen. This salt structure facilitates its ability to be made anhydrous without decomposition. Example anhydrous fluoride salts include (2,2-dimethylpropyl)trimethylammonium fluoride and bis(2,2-dimethylpropyl)dimethylammonium fluoride. Combining these fluoride salts with at least one fluorine-containing non-aqueous solvent (e.g., bis(2,2,2-trifluoroethyl)ether; (BTFE)) promotes solubility of the salt within the non-aqueous solvents. The solvent may be a mixture of at least one non-aqueous, fluorine-containing solvent and at least one other non-aqueous, fluorine or non-fluorine containing solvent (e.g., BTFE and propionitrile or dimethoxyethane).
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: July 20, 2021
    Assignees: California Institute of Technology, Honda Motor Co., Ltd.
    Inventors: Simon C. Jones, Victoria K. Davis, Christopher M. Bates, Nebojsa Momcilovic, Brett M. Savoie, Michael A. Webb, Thomas F. Miller, III, Robert H. Grubbs, Christopher Brooks, Kaoru Omichi
  • Publication number: 20210218063
    Abstract: Electrolyte solutions including at least one anhydrous fluoride salt and at least one non-aqueous solvent are presented. The fluoride salt includes an organic cation having a charge center (e.g., N, P, S, or O) that does not possess a carbon in the ?-position or does not possess a carbon in the ?-position having a bound hydrogen. This salt structure facilitates its ability to be made anhydrous without decomposition. Example anhydrous fluoride salts include (2,2-dimethylpropyl)trimethylammonium fluoride and bis(2,2-dimethylpropyl)dimethylammonium fluoride. Combining these fluoride salts with at least one fluorine-containing non-aqueous solvent (e.g., bis(2,2,2-trifluoroethyl)ether; (BTFE)) promotes solubility of the salt within the non-aqueous solvents. The solvent may be a mixture of at least one non-aqueous, fluorine-containing solvent and at least one other non-aqueous, fluorine or non-fluorine containing solvent (e.g., BTFE and propionitrile or dimethoxyethane).
    Type: Application
    Filed: March 30, 2021
    Publication date: July 15, 2021
    Applicants: CALIFORNIA INSTITUTE OF TECHNOLOGY, HONDA MOTOR CO., LTD.
    Inventors: Simon C. JONES, Victoria K. DAVIS, Christopher M. BATES, Nebojsa MOMCILOVIC, Brett M. SAVOIE, Michael A. WEBB, Thomas F. MILLER, III, Robert H. GRUBBS, Christopher BROOKS, Kaoru OMICHI
  • Publication number: 20200373622
    Abstract: Electrolyte solutions including at least one anhydrous fluoride salt and at least one non-aqueous solvent are presented. The fluoride salt includes an organic cation having a charge center (e.g., N, P, S, or O) that does not possess a carbon in the ?-position or does not possess a carbon in the ?-position having a bound hydrogen. This salt structure facilitates its ability to be made anhydrous without decomposition. Example anhydrous fluoride salts include (2,2-dimethylpropyl)trimethylammonium fluoride and bis(2,2-dimethylpropyl)dimethylammonium fluoride. Combining these fluoride salts with at least one fluorine-containing non-aqueous solvent (e.g., bis(2,2,2-trifluoroethyl)ether; (BTFE)) promotes solubility of the salt within the non-aqueous solvents. The solvent may be a mixture of at least one non-aqueous, fluorine-containing solvent and at least one other non-aqueous, fluorine or non-fluorine containing solvent (e.g., BTFE and propionitrile or dimethoxyethane).
    Type: Application
    Filed: June 10, 2020
    Publication date: November 26, 2020
    Applicants: CALIFORNIA INSTITUTE OF TECHNOLOGY, HONDA MOTOR CO., LTD.
    Inventors: Simon C. JONES, Victoria K. DAVIS, Christopher M. BATES, Nebojsa MOMCILOVIC, Brett M. SAVOIE, Michael A. WEBB, Thomas F. MILLER, III, Robert H. GRUBBS, Christopher BROOKS, Kaoru OMICHI
  • Patent number: 10720666
    Abstract: Electrolyte solutions including at least one anhydrous fluoride salt and at least one non-aqueous solvent are presented. The fluoride salt includes an organic cation having a charge center (e.g., N, P, S, or O) that does not possess a carbon in the ?-position or does not possess a carbon in the ?-position having a bound hydrogen. This salt structure facilitates its ability to be made anhydrous without decomposition. Example anhydrous fluoride salts include (2,2-dimethylpropyl)trimethylammonium fluoride and bis(2,2-dimethylpropyl)dimethylammonium fluoride. Combining these fluoride salts with at least one fluorine-containing non-aqueous solvent (e.g., bis(2,2,2-trifluoroethyl)ether; (BTFE)) promotes solubility of the salt within the non-aqueous solvents. The solvent may be a mixture of at least one non-aqueous, fluorine-containing solvent and at least one other non-aqueous, fluorine or non-fluorine containing solvent (e.g., BTFE and propionitrile or dimethoxyethane).
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: July 21, 2020
    Assignees: California Institute of Technology, Honda Motor Co., LTD.
    Inventors: Simon C. Jones, Victoria K. Davis, Christopher M. Bates, Nebojsa Momcilovic, Brett M. Savoie, Michael A. Webb, Thomas F. Miller, III, Robert H. Grubbs, Christopher Brooks, Kaoru Omichi
  • Publication number: 20200195171
    Abstract: A piezoelectric energy harvester system for collecting kinetic energy is provided, wherein the kinetic energy is converted into electrical energy, and wherein at least a portion of the converted electrical energy is utilized to operate a load. The system comprises an energy input portion and an energy harvesting portion. The energy input portion includes an input member configured to be actionable by an outside force. The energy harvesting portion includes a capture member, a sprocket portion, and a piezoelectric energy harvester. The capture member is adapted for receiving mechanical input from the input member. The sprocket portion is disposed for movement with the capture member. The sprocket portion includes at least one radially disposed sprocket actuator configured for making contact with and exciting the piezoelectric energy harvester. The piezoelectric energy harvester is excited by the contact to produce the kinetic energy.
    Type: Application
    Filed: February 27, 2020
    Publication date: June 18, 2020
    Applicant: Hanchett Entry Systems, Inc.
    Inventors: Michael A. Webb, Leland J. Hanchett, JR., Scott Sullivan
  • Patent number: 10615721
    Abstract: A piezoelectric energy harvester system for collecting kinetic energy is provided, wherein the kinetic energy is converted into electrical energy, and wherein at least a portion of the converted electrical energy is utilized to operate a load. The system comprises an energy input portion and an energy harvesting portion. The energy input portion includes an input member configured to be actionable by an outside force. The energy harvesting portion includes a capture member, a sprocket portion, and a piezoelectric energy harvester. The capture member is adapted for receiving mechanical input from the input member. The sprocket portion is disposed for movement with the capture member. The sprocket portion includes at least one radially disposed sprocket actuator configured for making contact with and exciting the piezoelectric energy harvester. The piezoelectric energy harvester is excited by the contact to produce the kinetic energy.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: April 7, 2020
    Assignee: Hanchett Entry Systems, Inc.
    Inventors: Michael A. Webb, Leland J. Hanchett, Jr., Scott Sullivan
  • Publication number: 20200106133
    Abstract: Processes and reaction mixtures including non-aqueous solvent mixtures are presented. Non-aqueous solvent mixtures including fluoride salt and non-aqueous solvent combinations are provided that possess high fluoride ion concentrations useful for a range of applications, including organic synthesis. Further non-aqueous solvent mixtures are provided including a salt possessing a non-fluoride anion and a non-aqueous solvent that, when contacted with aqueous fluoride-containing reagents, extract fluoride ions to form non-aqueous fluoride-ion solutions possessing high fluoride-ion concentrations. The salts include an organic cation that does not possess a carbon in the ?-position or does not possess a carbon in the ?-position having a bound hydrogen. This salt structure facilitates its ability to be made anhydrous without decomposition. Example anhydrous fluoride salts include (2,2-dimethylpropyl)trimethylammonium fluoride and bis(2,2-dimethylpropyl)dimethylammonium fluoride.
    Type: Application
    Filed: September 25, 2019
    Publication date: April 2, 2020
    Applicants: CALIFORNIA INSTITUTE OF TECHNOLOGY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Simon C. JONES, Victoria K. DAVIS, Christopher M. BATES, Nebojsa MOMCILOVIC, Brett M. SAVOIE, Michael A. WEBB, Thomas F. MILLER, III, Robert H. GRUBBS, Jennifer M. MURPHY
  • Patent number: 10468722
    Abstract: Processes and reaction mixtures including non-aqueous solvent mixtures are presented. Non-aqueous solvent mixtures including fluoride salt and non-aqueous solvent combinations are provided that possess high fluoride ion concentrations useful for a range of applications, including organic synthesis. Further non-aqueous solvent mixtures are provided including a salt possessing a non-fluoride anion and a non-aqueous solvent that, when contacted with aqueous fluoride-containing reagents, extract fluoride ions to form non-aqueous fluoride-ion solutions possessing high fluoride-ion concentrations. The salts include an organic cation that does not possess a carbon in the ?-position or does not possess a carbon in the ?-position having a bound hydrogen. This salt structure facilitates its ability to be made anhydrous without decomposition. Example anhydrous fluoride salts include (2,2-dimethylpropyl)trimethylammonium fluoride and bis(2,2-dimethylpropyl)dimethylammonium fluoride.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: November 5, 2019
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Simon C. Jones, Victoria K. Davis, Christopher M. Bates, Nebojsa Momcilovic, Brett M. Savoie, Michael A. Webb, Thomas F. Miller, III, Robert H. Grubbs, Jennifer M. Murphy
  • Patent number: 10465421
    Abstract: An access control device including an electromagnetic lock module for selectively locking and unlocking a door in a door frame is provided. The access control device provides a lower profiled electromagnetic lock module to improve the aesthetics and functionality of the module, supports and integrates modern accessories such as CCTV, CCD cameras, passive motion detection with automatic background correction, digital notification display, automatic source voltage selection, door and lock status indicators, and ease of installation. The present invention further provides components and circuitry to enable connection of the electromagnetic control module to 12 or 24 volts DC or to an unfiltered rectified AC power supply.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: November 5, 2019
    Assignee: Hanchett Entry Systems, Inc.
    Inventors: Michael A. Webb, Larry Gene Corwin
  • Patent number: 10270372
    Abstract: A piezoelectric energy harvester system for collecting kinetic energy is provided, wherein the kinetic energy is converted into electrical energy, and wherein at least a portion of the converted electrical energy is utilized to operate a load. The system comprises an energy input portion and an energy harvesting portion. The energy input portion includes an input member configured to be actionable by an outside force. The energy harvesting portion includes a capture member, a sprocket portion, and a piezoelectric energy harvester. The capture member is adapted for receiving mechanical input from the input member. The sprocket portion is disposed for movement with the capture member. The sprocket portion includes at least one radially disposed sprocket actuator configured for making contact with and exciting the piezoelectric energy harvester. The piezoelectric energy harvester is excited by the contact to produce the kinetic energy.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: April 23, 2019
    Assignee: Hanchett Entry Systems, Inc.
    Inventors: Michael A. Webb, Leland J. Hanchett, Jr., Scott Sullivan
  • Publication number: 20190068085
    Abstract: A piezoelectric energy harvester system for collecting kinetic energy is provided, wherein the kinetic energy is converted into electrical energy, and wherein at least a portion of the converted electrical energy is utilized to operate a load. The system comprises an energy input portion and an energy harvesting portion. The energy input portion includes an input member configured to be actionable by an outside force. The energy harvesting portion includes a capture member, a sprocket portion, and a piezoelectric energy harvester. The capture member is adapted for receiving mechanical input from the input member. The sprocket portion is disposed for movement with the capture member. The sprocket portion includes at least one radially disposed sprocket actuator configured for making contact with and exciting the piezoelectric energy harvester. The piezoelectric energy harvester is excited by the contact to produce the kinetic energy.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Applicant: Hanchett Entry Systems, Inc.
    Inventors: Michael A. Webb, Leland J. Hanchett, Scott Sullivan
  • Publication number: 20190010730
    Abstract: An access control device including an electromagnetic lock module for selectively locking and unlocking a door in a door frame is provided. The access control device provides a lower profiled electromagnetic lock module to improve the aesthetics and functionality of the module, supports and integrates modern accessories such as CCTV, CCD cameras, passive motion detection with automatic background correction, digital notification display, automatic source voltage selection, door and lock status indicators, and ease of installation. The present invention further provides components and circuitry to enable connection of the electromagnetic control module to 12 or 24 volts DC or to an unfiltered rectified AC power supply.
    Type: Application
    Filed: September 13, 2018
    Publication date: January 10, 2019
    Applicant: Hanchett Entry Systems, Inc.
    Inventors: Michael A. Webb, Larry Gene Corwin
  • Patent number: 10118976
    Abstract: Anion-coordinating polymers comprising one or more anion-coordinating unit of Formula (I), optionally in combination with one or more cation-coordinating unit of Formula (II) and/or a linking unit of Formula (III) and related electrolytes, batteries, methods and system.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: November 6, 2018
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, CORNELL UNIVERSITY
    Inventors: Brett M. Savoie, Michael A. Webb, Robert H. Grubbs, Thomas F. Miller, III, Geoffrey W. Coates, Qi Zheng
  • Patent number: 10077577
    Abstract: An access control device including an electromagnetic lock module for selectively locking and unlocking a door in a door frame is provided. The access control device provides a lower profiled electromagnetic lock module to improve the aesthetics and functionality of the module, supports and integrates modern accessories such as CCTV, CCD cameras, passive motion detection with automatic background correction, digital notification display, automatic source voltage selection, door and lock status indicators, and ease of installation. The present invention further provides components and circuitry to enable connection of the electromagnetic control module to 12 or 24 volts DC or to an unfiltered rectified AC power supply.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: September 18, 2018
    Assignee: Hanchett Entry Systems, Inc.
    Inventors: Michael A. Webb, Larry Gene Corwin
  • Patent number: 9957733
    Abstract: An access control device including an electromagnetic lock module for selectively locking and unlocking a door in a door frame is provided. The access control device provides a lower profiled electromagnetic lock module to improve the aesthetics and functionality of the module, supports and integrates modern accessories such as CCTV, CCD cameras, passive motion detection with automatic background correction, digital notification display, automatic source voltage selection, door and lock status indicators, and ease of installation. The present invention further provides components and circuitry to enable connection of the electromagnetic control module to 12 or 24 volts DC or to an unfiltered rectified AC power supply.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 1, 2018
    Assignee: Hanchett Entry Systems, Inc.
    Inventors: Michael A. Webb, Larry Gene Corwin, Jr., Matthew Lynn Petersen
  • Publication number: 20170275399
    Abstract: Anion-coordinating polymers comprising one or more anion-coordinating unit of Formula (I), optionally in combination with one or more cation-coordinating unit of Formula (II) and/or a linking unit of Formula (III) and related electrolytes, batteries, methods and system.
    Type: Application
    Filed: January 4, 2017
    Publication date: September 28, 2017
    Inventors: Brett M. SAVOIE, Michael A. WEBB, Robert H. GRUBBS, Thomas F. MILLER, III, Geoffrey W. COATES, Qi ZHENG
  • Patent number: 9708833
    Abstract: A swivel lock assembly with electronic and manual actuating means to unlock a handle thereby permitting access to the interior of the cabinet wherein the manual actuator can override the electronic actuator and vice versa. When in a locked position, the handle rests within lock housing such that the handle engages a blocker mounted within the housing. To unlock the handle, the blocker is manipulated by electronic or manual actuation such that the handle is no longer constrained and can be swung away from the housing about a handle pivot.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: July 18, 2017
    Assignee: Hanchett Entry Systems, Inc.
    Inventors: Dominik Scheffler, Dewey David, Michael A Webb