Patents by Inventor Michael ACKERMANN

Michael ACKERMANN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8983615
    Abstract: A communications bridge device communicates between a consumer electronics device, such as a smart telephone, and an implantable medical device. The bridge forwards instructions and data between the consumer electronics device and the implantable medical device. The bridge contains a first transceiver that operates according to a communication protocol operating in the consumer electronics device (such as Bluetooth®), and second transceiver that operates according to a communications technique operating in the implantable medical device (e.g., Frequency Shift Keying). A software application is installed on the consumer electronics device, which provides a user interface for controlling and reading the implantable medical device. The software application is downloadable using standard cellular means. The bridge is preferably small, and easily and discreetly carried by the implantable medical device patient.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 17, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Samuel Tahmasian, Daniel Ahassian, Douglas Michael Ackermann, Joonho Hyun, Dennis Ralph Zottola
  • Patent number: 8918181
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: December 23, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins
  • Publication number: 20140371812
    Abstract: Described here are devices, systems, and methods for treating one or more conditions (such as dry eye) or improving ocular health by providing stimulation to nasal or sinus tissue. Generally, the devices may be handheld or implantable. In some variations, the handheld devices may have a stimulator body and a stimulator probe having one or more nasal insertion prongs. When the devices and systems are used to treat dry eye, nasal or sinus tissue may be stimulated to increase tear production, reduce the symptoms of dry eye, and/or improve ocular surface health.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 18, 2014
    Inventors: Douglas Michael ACKERMANN, James Donald LOUDIN, John WARDLE, Jarren Armond BALDWIN, Daniel N. HAMILTON, Janusz KUZMA, Christopher William STIVERS, Manfred FRANKE
  • Publication number: 20140358191
    Abstract: Example adjustable electrodes are described. One example adjustable electrode includes two or more contacts configured to selectively deliver high frequency alternating current (HFAC) to a nerve in an amount sufficient to produce an HFAC nerve conduction block in the nerve. The example adjustable electrode may also include a logic configured to selectively control which of the two or more contacts deliver HFAC to the nerve to control whether the nerve electrode is in a first (e.g., onset response mitigating) configuration or in a second (e.g., HFAC nerve conduction block maintenance) configuration. The electrode may be used in applications including, but not limited to, nerve block applications, and nerve stimulation applications. The electrode may be adjusted by changing attributes including, but not limited to, the number, length, orientation, distance between, surface area, and distance from a nerve of contacts to be used to deliver the HFAC.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventors: Kevin KILGORE, Douglas Michael ACKERMANN, JR., Niloy BHADRA, Narendra BHADRA, Joe PAYER
  • Publication number: 20140316485
    Abstract: Described here are devices, systems, and methods for treating one or more conditions (such as dry eye) or improving ocular health by providing stimulation to nasal or sinus tissue. Generally, the devices may be handheld or implantable. In some variations, the handheld devices may have a stimulator body and a stimulator probe having one or more nasal insertion prongs. When the devices and systems are used to treat dry eye, nasal or sinus tissue may be stimulated to increase tear production, reduce the symptoms of dry eye, and/or improve ocular surface health.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 23, 2014
    Applicant: Oculeve, Inc.
    Inventors: Douglas Michael ACKERMANN, James Donald LOUDIN, John WARDLE, Jarren Armond BALDWIN, Daniel N. HAMILTON, Janusz KUZMA, Christopher William STIVERS
  • Publication number: 20140316310
    Abstract: Described here are devices, systems, and methods for treating one or more conditions (such as dry eye) or improving ocular health by providing stimulation to nasal or sinus tissue. Generally, the devices may be handheld or implantable. In some variations, the handheld devices may have a stimulator body and a stimulator probe having one or more nasal insertion prongs. When the devices and systems are used to treat dry eye, nasal or sinus tissue may be stimulated to increase tear production, reduce the symptoms of dry eye, and/or improve ocular surface health.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 23, 2014
    Applicant: Oculeve, Inc.
    Inventors: Douglas Michael ACKERMANN, James Donald LOUDIN
  • Patent number: 8843188
    Abstract: Example adjustable electrodes are described. One example adjustable electrode includes two or more contacts configured to selectively deliver high frequency alternating current (HFAC) to a nerve in an amount sufficient to produce an HFAC nerve conduction block in the nerve. The example adjustable electrode also includes a logic configured to selectively control which of the two or more contacts deliver HFAC to the nerve to control whether the nerve electrode is in a first (e.g., onset response mitigating) configuration or in a second (e.g., HFAC nerve conduction block maintenance) configuration. The electrode may be used in applications including, but not limited to, nerve block applications, and nerve stimulation applications. The electrode may be adjusted by changing attributes including, but not limited to, the number, length, orientation, distance between, surface area, and distance from a nerve of contacts to be used to deliver the HFAC.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: September 23, 2014
    Assignee: Case Western Reserve University
    Inventors: Kevin Kilgore, Douglas Michael Ackermann, Jr., Niloy Bhadra, Narendra Bhadra, Joe Payer
  • Publication number: 20140277429
    Abstract: Described here are systems, devices, and methods for delivering an implant to the orbit. In some instances, the systems may comprise a delivery device having a tongue member and a handle. The delivery device may further include an ejector configured to deliver an implant from the tongue member. The delivery device may also include a piercing member configured to create an opening in tissue. The systems may further comprise a piercing member for creating an opening in tissue. In some instances, the piercing member may have a first blade member rotatably connected to a second blade member.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: Oculeve, Inc.
    Inventors: Janusz KUZMA, Douglas Michael ACKERMANN, Christopher William STIVERS
  • Publication number: 20140257433
    Abstract: Described here are devices, systems, and methods for treating a condition in an animal. Generally the systems include a stimulator that is implantable in the animal and a controller system configured to transmit one or more signals to the implanted stimulator. The controller system may have a controller configured to generate the one or more signals. The controller system may include one or more collars, bridles, horse hoods, cages, animal beds, and/or food bowls. The systems may be used to treat one or more conditions such as dry eye, and may treat the conditions in an animal such as a horse, dog, or cat.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: OCULEVE, INC.
    Inventors: Douglas Michael ACKERMANN, James Donald LOUDIN
  • Publication number: 20140055741
    Abstract: Embodiments of the technology relate to a contact lens having a core that is covalently coated by a hydrogel layer, and to methods of making such a lens. In one aspect, embodiments provide for a coated contact lens comprising a lens core comprising an outer surface; and a hydrogel layer covalently attached to at least a portion of the outer surface, the hydrogel layer adapted to contact an ophthalmic surface, wherein the hydrogel layer comprises a hydrophilic polymer population having a first PEG species and a second PEG species, the first PEG species being at least partially cross-linked to the second PEG species.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 27, 2014
    Inventors: Karen L. Havenstrite, Victor Wayne McCray, Brandon McNary Felkins, Douglas Michael Ackermann, Garrett Cale Smith, Paul A. Cook, Evan S. Luxon, Andrew A. McGibbon
  • Publication number: 20130331912
    Abstract: A neurostimulation system comprises an implantable neurostimulation lead, an implantable neurostimulator configured for delivering stimulation energy to the lead, an indicator configured for outputting a user-discernible alert signal indicating that the lead has migrated from a baseline position, memory configured for storing a threshold value, and a processor configured for determining a magnitude at which the lead has migrated from the baseline position, comparing the determined magnitude to the threshold value, and prompting the indicator to output the alert signal based on the comparison. A method of alerting a user to the migration of a neurostimulation lead implanted within the user comprises determining a magnitude at which an implanted neurostimulation lead has migrated from a baseline position, comparing the determined magnitude to a threshold value, and outputting a user-discernible alert signal indicating that the implanted lead has migrated based on the comparison.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 12, 2013
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Douglas Michael Ackermann, Anne Margaret Pianca
  • Publication number: 20130006326
    Abstract: Described here are stimulation systems and methods for stimulating one or more anatomical targets in a patient for treatment conditions such as dry eye. The stimulation system may include a controller and a microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a signal received from the controller and apply the signal via one or more electrodes to an anatomical target. In some variations, the microstimulator may include a passive generation circuit configured to generate a pulse based on a signal received from the controller.
    Type: Application
    Filed: April 6, 2012
    Publication date: January 3, 2013
    Inventors: Douglas Michael ACKERMANN, James Donald LOUDIN, Janusz KUZMA, Daniel PALANKER, Scott Franklin WETENKAMP
  • Publication number: 20120239108
    Abstract: An apparatus is disclosed for providing efficient stimulation. As an example, a variable compliance regulator can be connected to supply a compliance voltage to a power supply rail, which compliance voltage can vary dynamically based on a stimulus waveform. A pulse generator can be configured to provide an output waveform to one or more output based on the stimulus waveform for delivery of electrical therapy.
    Type: Application
    Filed: November 3, 2011
    Publication date: September 20, 2012
    Inventors: Thomas J. Foutz, D. Michael Ackermann, Cameron C. McIntyre
  • Publication number: 20120215285
    Abstract: A communications bridge device communicates between a consumer electronics device, such as a smart telephone, and an implantable medical device. The bridge forwards instructions and data between the consumer electronics device and the implantable medical device. The bridge contains a first transceiver that operates according to a communication protocol operating in the consumer electronics device (such as Bluetooth®), and second transceiver that operates according to a communications technique operating in the implantable medical device (e.g., Frequency Shift Keying). A software application is installed on the consumer electronics device, which provides a user interface for controlling and reading the implantable medical device. The software application is downloadable using standard cellular means. The bridge is preferably small, and easily and discreetly carried by the implantable medical device patient.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 23, 2012
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Samuel Tahmasian, Daniel Aghassian, Douglas Michael Ackermann, Joonho Hyun
  • Publication number: 20120143296
    Abstract: A percutaneously implantable paddle lead includes an elongated lead body having a proximal portion and a distal portion; a plurality of terminals disposed on the proximal portion of the lead; a flexible paddle body coupled to the distal portion of the lead; and a plurality of electrodes disposed in the paddle body and electrically coupled to the terminals on the proximal portion of the lead. The percutaneously implantable paddle lead also includes a bonding material in contact with the paddle body and holding the paddle body in a compacted form prior to, and during, insertion into a percutaneous implantation tool. The bonding material is configured and arranged to release the paddle body during or soon after implantation into a patient so that the paddle body can deploy into its paddle-like form. Alternatively, at least one current-degradable fastener can be used instead of the binding material.
    Type: Application
    Filed: November 18, 2011
    Publication date: June 7, 2012
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Anne Margaret Pianca, Douglas Michael Ackermann
  • Publication number: 20120130398
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 24, 2012
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins
  • Publication number: 20110288618
    Abstract: In accordance with the present inventions, anchoring devices for a lead (e.g., a neurostimulation lead) placed on solid tissue (e.g., fascia) and methods of anchoring the lead relative to the tissue are provided. Such methods may include inserting the lead into an epidural space and coupling the lead to a neurostimulation.
    Type: Application
    Filed: May 20, 2011
    Publication date: November 24, 2011
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Kevin Alan Glen, Douglas Michael Ackermann, Roger Chen
  • Publication number: 20110257710
    Abstract: A neurostimulation system comprises an implantable neurostimulation lead, an implantable neurostimulator configured for delivering stimulation energy to the lead, an indicator configured for outputting a user-discernible alert signal indicating that the lead has migrated from a baseline position, memory configured for storing a threshold value, and a processor configured for determining a magnitude at which the lead has migrated from the baseline position, comparing the determined magnitude to the threshold value, and prompting the indicator to output the alert signal based on the comparison. A method of alerting a user to the migration of a neurostimulation lead implanted within the user comprises determining a magnitude at which an implanted neurostimulation lead has migrated from a baseline position, comparing the determined magnitude to a threshold value, and outputting a user-discernible alert signal indicating that the implanted lead has migrated based on the comparison.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 20, 2011
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Douglas Michael Ackermann, Anne Margaret Pianca
  • Publication number: 20110257709
    Abstract: A neurostimulation system comprises an implantable neurostimulation lead, an implantable neurostimulator configured for delivering stimulation energy to the implantable neurostimulation lead, an actuating device configured for modifying a linear shape of the lead after it has migrated from a baseline position, memory configured for storing a threshold value, and a processor configured for determining a magnitude at which the lead has migrated from the baseline position, comparing the determined magnitude to the threshold value, and prompting the actuating device to modify the linear shape of the lead based on the comparison. A method of correcting the migration of a neurostimulation lead implanted within the patient comprises determining a magnitude at which the implanted lead has migrated from a baseline position, comparing the determined magnitude to a threshold value, and modifying the linear shape of the lead based on the comparison.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 20, 2011
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Douglas Michael Ackermann, Anne Margaret Pianca, Michael Adam Moffitt
  • Publication number: 20110160798
    Abstract: Example ionic coupling electrodes are described. One example ionic conducting electrode includes a first portion that can be coupled to a single phase current source. The first portion carries current flow via electrons. The electrode includes a second portion to apply a current to a nerve tissue. The second portion carries current flow via ions. The second portion is positioned between the nerve tissue and the first portion to prevent the first portion from touching the nerve tissue. The current applied to the nerve tissue is produced in the second portion in response to a current that is present in the first portion. The current present in the first portion is provided from a single phase current source. The electrode may be used in applications including, but not limited to, nerve block applications and nerve stimulation applications.
    Type: Application
    Filed: November 18, 2010
    Publication date: June 30, 2011
    Applicant: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Douglas Michael ACKERMANN, JR., Kevin Kilgore, Niloy Bhadra, Narendra Bhadra