Patents by Inventor Michael Albiez

Michael Albiez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220280983
    Abstract: The invention relates to a high pressure cleaning system including a high pressure cleaning appliance operable with at least one variable operating parameter that has a pump assembly, at least one accessory that is in or is bringable into flow connection with a high pressure outlet of the pump assembly, an input unit, at least one control unit coupled to the input unit, and an output unit coupled to the at least one control unit, wherein an object to be cleaned is specifiable by the input unit and a cleaning recommendation is providable on the output unit by the at least one control unit in dependence on the specification, and wherein at least one interaction element is provided for the user, linked to the cleaning recommendation, on the output unit for transmitting interaction information to the at least one control unit, in particular in dependence on the cleaning recommendation.
    Type: Application
    Filed: January 28, 2022
    Publication date: September 8, 2022
    Inventors: Andreas Friederich, Michael Albiez, Tobias Masek, Timo Spengler, Angelika Mohr
  • Patent number: 11276547
    Abstract: Disclosed is a charged particle optical apparatus. The charged particle optical apparatus has a liner electrode in a first vacuum zone. The liner electrode is used to generate an electrostatic objective lens field. The apparatus has a second electrode which surrounds at least a section of the primary particle beam path. The section extends in the first vacuum zone and downstream of the liner electrode. A third electrode is provided having a differential pressure aperture through which the particle beam path exits from the first vacuum zone. A particle detector is configured for detecting emitted particles, which are emitted from the object and which pass through the differential pressure aperture of the third electrode. The liner electrode, the second and third electrodes are operable at different potentials relative to each other.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: March 15, 2022
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Erik Essers, Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Patent number: 11139140
    Abstract: A particle beam apparatus includes a first aperture unit having an adjustable aperture opening. The particle beam apparatus may include a first condenser lens having a first pole shoe and a second pole shoe. Both the first pole shoe and the second pole shoe may be adjustable relative to a second aperture unit independently of each other. The second aperture unit may be designed as a pressure stage aperture separating a first area having a vacuum at a first pressure, and a second area having a vacuum at a second pressure. Additionally, a method for adjusting a beam current in a particle beam apparatus is provided.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: October 5, 2021
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Dirk Preikszas, Michael Albiez
  • Publication number: 20210050178
    Abstract: Disclosed is a charged particle optical apparatus. The charged particle optical apparatus has a liner electrode in a first vacuum zone. The liner electrode is used to generate an electrostatic objective lens field. The apparatus has a second electrode which surrounds at least a section of the primary particle beam path. The section extends in the first vacuum zone and downstream of the liner electrode. A third electrode is provided having a differential pressure aperture through which the particle beam path exits from the first vacuum zone. A particle detector is configured for detecting emitted particles, which are emitted from the object and which pass through the differential pressure aperture of the third electrode. The liner electrode, the second and third electrodes are operable at different potentials relative to each other.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 18, 2021
    Inventors: Erik Essers, Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Patent number: 10861670
    Abstract: Disclosed is a charged particle optical apparatus. The charged particle optical apparatus has a liner electrode in a first vacuum zone. The liner electrode is used to generate an electrostatic objective lens field. The apparatus has a second electrode which surrounds at least a section of the primary particle beam path. The section extends in the first vacuum zone and downstream of the liner electrode. A third electrode is provided having a differential pressure aperture through which the particle beam path exits from the first vacuum zone. A particle detector is configured for detecting emitted particles, which are emitted from the object and which pass through the differential pressure aperture of the third electrode. The liner electrode, the second and third electrodes are operable at different potentials relative to each other.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 8, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Erik Essers, Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Publication number: 20200135425
    Abstract: Disclosed is a charged particle optical apparatus. The charged particle optical apparatus has a liner electrode in a first vacuum zone. The liner electrode is used to generate an electrostatic objective lens field. The apparatus has a second electrode which surrounds at least a section of the primary particle beam path. The section extends in the first vacuum zone and downstream of the liner electrode. A third electrode is provided having a differential pressure aperture through which the particle beam path exits from the first vacuum zone. A particle detector is configured for detecting emitted particles, which are emitted from the object and which pass through the differential pressure aperture of the third electrode. The liner electrode, the second and third electrodes are operable at different potentials relative to each other.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Erik Essers, Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Patent number: 10522321
    Abstract: Disclosed is a charged particle optical apparatus. The charged particle optical apparatus has a liner electrode in a first vacuum zone. The liner electrode is used to generate an electrostatic objective lens field. The apparatus has a second electrode which surrounds at least a section of the primary particle beam path. The section extends in the first vacuum zone and downstream of the liner electrode. A third electrode is provided having a differential pressure aperture through which the particle beam path exits from the first vacuum zone. A particle detector is configured for detecting emitted particles, which are emitted from the object and which pass through the differential pressure aperture of the third electrode. The liner electrode, the second and third electrodes are operable at different potentials relative to each other.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: December 31, 2019
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Erik Essers, Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Publication number: 20180342368
    Abstract: Disclosed is a charged particle optical apparatus. The charged particle optical apparatus has a liner electrode in a first vacuum zone. The liner electrode is used to generate an electrostatic objective lens field. The apparatus has a second electrode which surrounds at least a section of the primary particle beam path. The section extends in the first vacuum zone and downstream of the liner electrode. A third electrode is provided having a differential pressure aperture through which the particle beam path exits from the first vacuum zone. A particle detector is configured for detecting emitted particles, which are emitted from the object and which pass through the differential pressure aperture of the third electrode. The liner electrode, the second and third electrodes are operable at different potentials relative to each other.
    Type: Application
    Filed: July 27, 2018
    Publication date: November 29, 2018
    Inventors: Erik Essers, Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Patent number: 10068744
    Abstract: Disclosed is a charged particle optical apparatus. The charged particle optical apparatus has a liner electrode in a first vacuum zone. The liner electrode is used to generate an electrostatic objective lens field. The apparatus has a second electrode which surrounds at least a section of the primary particle beam path. The section extends in the first vacuum zone and downstream of the liner electrode. A third electrode is provided having a differential pressure aperture through which the particle beam path exits from the first vacuum zone. A particle detector is configured for detecting emitted particles, which are emitted from the object and which pass through the differential pressure aperture of the third electrode. The liner electrode, the second and third electrodes are operable at different potentials relative to each other.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: September 4, 2018
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Erik Essers, Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Patent number: 9741528
    Abstract: Disclosed is a charged particle optical apparatus, which includes a particle optical arrangement, configured to define a particle beam path for inspecting an object. The object is accommodated in a pressure-controlled interior of a specimen chamber during the inspection of the object. The charged particle optical apparatus further includes a differential pressure module having a differential pressure aperture. A positioning arm is arranged in the specimen chamber for selectively position the differential pressure module within the pressure-controlled interior of the specimen chamber into an operating position in which the particle beam path passes through the differential pressure aperture. The selective positioning includes an advancing movement of the differential pressure module toward the primary particle beam path. The advancing movement is transmitted to the differential pressure module by a track-guided movement of the positioning arm.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: August 22, 2017
    Assignee: CARL ZEISS MICROSCOPY GMBH
    Inventors: Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean, Erik Essers
  • Publication number: 20170154752
    Abstract: Disclosed is a charged particle optical apparatus. The charged particle optical apparatus has a liner electrode in a first vacuum zone. The liner electrode is used to generate an electrostatic objective lens field. The apparatus has a second electrode which surrounds at least a section of the primary particle beam path. The section extends in the first vacuum zone and downstream of the liner electrode. A third electrode is provided having a differential pressure aperture through which the particle beam path exits from the first vacuum zone. A particle detector is configured for detecting emitted particles, which are emitted from the object and which pass through the differential pressure aperture of the third electrode. The liner electrode, the second and third electrodes are operable at different potentials relative to each other.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Inventors: Erik Essers, Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Patent number: 9354188
    Abstract: A particle beam device, in particular an electron beam device, is provided having a beam generator for generating a primary particle beam, an objective lens for focusing the primary particle beam onto an object, and a detector for detecting particles emitted by the object. The objective lens has at least one magnetic unit, with the magnetic unit generating at least one first crossover and at least one second crossover. The first crossover is arranged in the objective lens or in a region between the objective lens and the object. The second crossover is arranged at the object. The device permits the examination of the object using particles which have a low energy, with good imaging properties. A method for operating the particle beam device is also provided.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: May 31, 2016
    Assignee: Carl Zeiss Microscopy GmbH
    Inventor: Michael Albiez
  • Publication number: 20150348742
    Abstract: Disclosed is a charged particle optical apparatus, which includes a particle optical arrangement, configured to define a particle beam path for inspecting an object. The object is accommodated in a pressure-controlled interior of a specimen chamber during the inspection of the object. The charged particle optical apparatus further includes a differential pressure module having a differential pressure aperture. A positioning arm is arranged in the specimen chamber for selectively position the differential pressure module within the pressure-controlled interior of the specimen chamber into an operating position in which the particle beam path passes through the differential pressure aperture. The selective positioning includes an advancing movement of the differential pressure module toward the primary particle beam path. The advancing movement is transmitted to the differential pressure module by a track-guided movement of the positioning arm.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 3, 2015
    Inventors: Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Patent number: 8779381
    Abstract: An aperture unit for a particle beam device, in particular an electron beam device, is disclosed. Deposit supporting units are arranged at the aperture unit, with which deposit supporting units contaminations can be bound in such a way that the contaminations can no longer deposit at an aperture opening of the aperture unit. Coatings which can be arranged on the aperture unit make it possible to reduce interactions which cause contaminations to deposit at the aperture opening.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: July 15, 2014
    Assignee: Carl Zeiss NTS GmbH
    Inventors: Matthias Lang, Ulrike Zeile, Michael Albiez, Wolfram Bühler
  • Publication number: 20140070097
    Abstract: A particle beam device, in particular an electron beam device, is provided having a beam generator for generating a primary particle beam, an objective lens for focusing the primary particle beam onto an object, and a detector for detecting particles emitted by the object. The objective lens has at least one magnetic unit, with the magnetic unit generating at least one first crossover and at least one second crossover. The first crossover is arranged in the objective lens or in a region between the objective lens and the object. The second crossover is arranged at the object. The device permits the examination of the object using particles which have a low energy, with good imaging properties. A method for operating the particle beam device is also provided.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 13, 2014
    Applicant: Carl Zeiss Microscopy GmbH
    Inventor: Michael Albiez
  • Patent number: 8481933
    Abstract: A method for treating a surface of an object and a device suitable in particular for performing this method provide for examining the surface of the object with the aid of a particle beam to counteract the charge buildup on the object. A gas is supplied to convey the charge away from the surface and/or to neutralize it.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: July 9, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Michael Albiez, Wolfram Buhler
  • Patent number: 8450215
    Abstract: An inspection method comprises focusing a particle beam onto a sample; operating at least one detector located close to the sample; assigning detection signals generated by the at least one detector to different intensity intervals; determining, based on the detection signals assigned to the intensity intervals, at least one first signal component related to electrons incident on the detector; and determining, based on the detection signals assigned to the intensity intervals, at least one second signal component related to X-rays incident on the detector.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 28, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Hubert Mantz, Rainer Arnold, Michael Albiez
  • Patent number: 8368019
    Abstract: A particle beam system comprises a particle beam source 5 for generating a primary particle beam 13, an objective lens 19 for focusing the primary particle beam 13 in an object plane 23; a particle detector 17; and an X-ray detector 47 arranged between the objective lens and the object plane. The X-ray detector comprises plural semiconductor detectors, each having a detection surface 51 oriented towards the object plane. A membrane is disposed between the object plane and the detection surface of the semiconductor detector, wherein different semiconductor detectors have different membranes located in front, the different membranes differing with respect to a secondary electron transmittance.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: February 5, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Hubert Mantz, Rainer Arnold, Michael Albiez
  • Patent number: 8368020
    Abstract: A particle beam system comprises a particle beam source 5 for generating a primary particle beam 13, an objective lens 19 for focusing the primary particle beam 13 in an object plane 23; a particle detector 17; and an X-ray detector 47 arranged between the objective lens and the object plane. The X-ray detector comprises plural semiconductor detectors, each having a detection surface 51 oriented towards the object plane. A membrane is disposed between the object plane and the detection surface of the semiconductor detector, wherein different semiconductor detectors have different membranes located in front, the different membranes differing with respect to a secondary electron transmittance.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: February 5, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Hubert Mantz, Rainer Arnold, Michael Albiez
  • Publication number: 20120112089
    Abstract: An aperture unit for a particle beam device, in particular an electron beam device, is disclosed. Deposit supporting units are arranged at the aperture unit, with which deposit supporting units contaminations can be bound in such a way that the contaminations can no longer deposit at an aperture opening of the aperture unit. Coatings which can be arranged on the aperture unit make it possible to reduce interactions which cause contaminations to deposit at the aperture opening.
    Type: Application
    Filed: September 19, 2011
    Publication date: May 10, 2012
    Inventors: Matthias Lang, Ulrike Zeile, Michael Albiez, Wolfram Bühler