Patents by Inventor Michael Allen Seigler

Michael Allen Seigler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150146508
    Abstract: A device that includes a near field transducer (NFT); at least one cladding layer adjacent the NFT; and a discontinuous metal layer positioned between the NFT and the at least one cladding layer.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 28, 2015
    Inventors: Tong Zhao, Michael Christopher Kautzky, Michael Allen Seigler, Yongjun Zhao, Jay Jayashankar, Xiaoyue Huang
  • Patent number: 8976634
    Abstract: Devices that include a near field transducer (NFT), the NFT including a peg having five exposed surfaces, the peg including a first material; an overlying structure; at least one intermixing layer, positioned between the peg and the overlying structure, the at least one intermixing layer positioned on at least one of the five surfaces of the peg, the intermixing layer including at least the first material and a second material.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: March 10, 2015
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Michael Allen Seigler
  • Patent number: 8971161
    Abstract: Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: rhenium, osmium, iridium, platinum, hafnium, ruthenium, technetium, rhodium, palladium, beryllium, aluminum, manganese, indium, boron, and combinations thereof beryllium oxide, silicon oxide, iron oxide, zirconium oxide, manganese oxide, cadmium oxide, magnesium oxide, hafnium oxide, and combinations thereof tantalum carbide, uranium carbide, hafnium carbide, zirconium carbide, scandium carbide, manganese carbide, iron carbide, niobium carbide, technetium carbide, rhenium carbide, and combinations thereof chromium nitride, boron nitride, and combinations thereof.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: March 3, 2015
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Andrew J. Boyne, Michael Allen Seigler, Sethuraman Jayashankar
  • Publication number: 20150043317
    Abstract: A head assembly includes a submount, a body with a first surface, an optical path, a near field transducer (NFT), a sensor, and a laser. The optical path is disposed in the body and is adapted to receive light and convey the light to a distal end of the waveguide. The near field transducer (NFT) is disposed adjacent the distal end of the waveguide and has an output end proximate the first surface of the body. The sensor interfaces with the submount and the laser is attached to the submount along a non-primary lasing surface. The laser is adapted to inject light into the waveguide and includes a grating adapted to diffract a portion of the light through the non-primary lasing surface to the sensor.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Applicant: Seagate Technology LLC
    Inventors: Michael Allen Seigler, Delai Zhou
  • Patent number: 8953421
    Abstract: An apparatus includes a submount having a mounting surface and a top surface opposite the mounting surface. A slider has a bonding feature that interfaces with the mounting surface of the submount, and two or more layers are disposed between the mounting surface of the submount and the bonding feature. The two or more layers are configured to enhance light absorption of light in proximity to the bonding feature. The light originates from a source of electromagnetic energy that illuminates the top surface of the submount.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: February 10, 2015
    Assignee: Seagate Technology LLC
    Inventors: Chubing Peng, Michael Allen Seigler
  • Patent number: 8953272
    Abstract: An apparatus includes a waveguide configured to deliver light to a transducer region. The apparatus also includes a plasmonic transducer that has two metal elements configured as side-by-side plates on a substrate-parallel plane with a gap therebetween. The gap is disposed along the substrate-parallel plane and has an input end disposed proximate the transducer region and an output end. The transducer is configured to provide a surface plasmon-enhanced near-field radiation pattern proximate the output end in response to the light received by the waveguide.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: February 10, 2015
    Assignee: Seagate Technology LLC
    Inventors: Chubing Peng, Kaizhong Gao, Lien Lee, Amit Itagi, Michael Allen Seigler, Yimin Niu, Sethuraman Jayashankar
  • Patent number: 8945731
    Abstract: A device that includes a near field transducer (NFT); at least one cladding layer adjacent the NFT; and a discontinuous metal layer positioned between the NFT and the at least one cladding layer.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: February 3, 2015
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Michael Christopher Kautzky, Michael Allen Seigler, Yongjun Zhao, Jay Jayashankar, Xiaoyue Huang
  • Publication number: 20150016234
    Abstract: An apparatus includes a transducer including a plasmonic funnel having first and second ends with the first end having a smaller cross-sectional area than the second end, and a first section positioned adjacent to the first end of the plasmonic funnel, and a first waveguide having a core, positioned to cause light in the core to excite surface plasmons on the transducer.
    Type: Application
    Filed: October 3, 2014
    Publication date: January 15, 2015
    Inventors: Amit Vasant Itagi, Jie Zou, Kaizhong Gao, Michael Allen Seigler
  • Publication number: 20150003220
    Abstract: An apparatus includes a submount having a mounting surface and a top surface opposite the mounting surface. A slider has a bonding feature that interfaces with the mounting surface of the submount, and two or more layers are disposed between the mounting surface of the submount and the bonding feature. The two or more layers are configured to enhance light absorption of light in proximity to the bonding feature. The light originates from a source of electromagnetic energy that illuminates the top surface of the submount.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Chubing Peng, Michael Allen Seigler
  • Patent number: 8923101
    Abstract: An apparatus includes a slider body, a write element, and a laser chip. The write element is disposed on the slider body and is configured to apply a magnetic field to write data on a portion of a heat-assisted magnetic recording media in response to an energizing current. The laser chip has a laser diode with an active region configured to produce light. The laser diode adapted to inject the light to the proximate the read/write element. The laser chip additionally has a photodetector The photodetector is adapted to monitor light from the laser diode. The photodetector shares a same active region as the laser diode and the laser diode and photodetector are integrated together on the same laser chip.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: December 30, 2014
    Assignee: Seagate Technology LLC
    Inventors: Karim Tatah, Michael Allen Seigler
  • Publication number: 20140376349
    Abstract: Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: rhenium, osmium, iridium, platinum, hafnium, ruthenium, technetium, rhodium, palladium, beryllium, aluminum, manganese, indium, boron, and combinations thereof beryllium oxide, silicon oxide, iron oxide, zirconium oxide, manganese oxide, cadmium oxide, magnesium oxide, hafnium oxide, and combinations thereof tantalum carbide, uranium carbide, hafnium carbide, zirconium carbide, scandium carbide, manganese carbide, iron carbide, niobium carbide, technetium carbide, rhenium carbide, and combinations thereof chromium nitride, boron nitride, and combinations thereof.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Andrew J. Boyne, Michael Allen Seigler, Sethuraman Jayashankar
  • Publication number: 20140376350
    Abstract: Devices that include a near field transducer (NFT); a gas barrier layer positioned on at least a portion of the NFT; and a wear resistance layer positioned on at least a portion of the gas barrier layer wherein the gas barrier layer includes tantalum oxide (TaO), titanium oxide (TiO), chromium oxide (CrO), silicon oxide (SiO), aluminum oxide (AlO), titanium oxide (TiO), zirconium oxide (ZrO), yttrium oxide (YO), magnesium oxide (MgO), beryllium oxide (BeO), niobium oxide (NbO), hafnium oxide (HfO), vanadium oxide (VO), strontium oxide (SrO), or combinations thereof; silicon nitride (SiN), aluminum nitride (Al), boron nitride (BN), titanium nitride (TiN), zirconium nitride (ZrN), niobioum nitride (NbN), hafnium nitride (HfN), chromium nitride (CrN), or combinations thereof silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), niobioum carbide (NbC), chromium carbide (CrC), vanadium carbide (VC), boron carbide (BC), or combinations thereof or combinations thereof.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Scott Franzen, Ed F. Rejda, Kurt W. Wierman, Michael Allen Seigler
  • Publication number: 20140376351
    Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler
  • Publication number: 20140376352
    Abstract: A device including a near field transducer, the near field transducer including gold (Au), silver (Ag), copper (Cu), or aluminum (Al), and at least two other secondary atoms, the at least two other secondary atoms selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), manganese (Mn), tellurium (Te), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), germanium (Ge), hydrogen (H), iodine (I), rubidium (Rb), selenium (Se), terbium (Tb), nitrogen (N), oxygen (O), carbon (C), antimony (Sb), gadolinium (Gd), samarium (Sm), thallium (Tl), cadmium (Cd), neodymium (Nd), phosphorus (P), lead (Pb), hafnium (Hf), niobium (Nb), erbium (Er), zinc (Zn), magnesium (Mg), palladium (Pd), vanadium (V), zinc (Zn), chromium (Cr), iron (Fe), lithium (Li), nickel (Ni), platinum (Pt), sodium (Na), strontium (Sr), calcium (Ca), yttrium (Y), thorium (Th), beryllium (Be), thulium (Tm), erbium
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Justin Glen Brons, Steve C. Riemer, Jie Gong, Michael Allen Seigler
  • Publication number: 20140369174
    Abstract: An apparatus includes a waveguide configured to deliver light to a transducer region. The apparatus also includes a plasmonic transducer that has two metal elements configured as side-by-side plates on a substrate-parallel plane with a gap therebetween. The gap is disposed along the substrate-parallel plane and has an input end disposed proximate the transducer region and an output end. The transducer is configured to provide a surface plasmon-enhanced near-field radiation pattern proximate the output end in response to the light received by the waveguide.
    Type: Application
    Filed: September 2, 2014
    Publication date: December 18, 2014
    Inventors: Chubing Peng, Kaizhong Gao, Lien Lee, Amit Itagi, Michael Allen Seigler, Yimin Niu, Sethuraman Jayashankar
  • Patent number: 8848307
    Abstract: An apparatus includes a magnetic recording layer and a thermally active material adjacent to and/or embedded in the magnetic recording layer, wherein the thermally active material has a thermal property that changes when the temperature of the thermally active material changes, or undergoes a phase transition in a predetermined temperature range, to reduce a peak temperature or increase a thermal gradient of a heated portion of the magnetic recording layer.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: September 30, 2014
    Assignee: Seagate Technology LLC
    Inventors: Michael Allen Seigler, William Challener
  • Publication number: 20140254337
    Abstract: A device comprises a near field transducer (NFT) and electrodes configured to at least one of generate or enhance surface plasmons in the NFT by passing electrical current through a portion of the NFT.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Michael Allen Seigler, Mark William Covington
  • Patent number: 8824086
    Abstract: An apparatus includes a waveguide configured to deliver light to a transducer region. The apparatus also includes a plasmonic transducer that has two metal elements configured as side-by-side plates on a substrate-parallel plane with a gap therebetween. The gap is disposed along the substrate-parallel plane and has an input end disposed proximate the transducer region and an output end. The transducer is configured to provide a surface plasmon-enhanced near-field radiation pattern proximate the output end in response to the light received by the waveguide.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: September 2, 2014
    Assignee: Seagate Technology LLC
    Inventors: Chubing Peng, Kaizhong Gao, Lien Lee, Amit Itagi, Michael Allen Seigler, Yimin Niu, Sethuraman Jayashankar
  • Patent number: 8811128
    Abstract: A device comprises a near field transducer (NFT) and electrodes configured to at least one of generate or enhance surface plasmons in the NFT by passing electrical current through a portion of the NFT.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 19, 2014
    Assignee: Seagate Technology LLC
    Inventors: Michael Allen Seigler, Mark William Covington
  • Patent number: 8804468
    Abstract: A near-field transducer includes a substrate that defines a substrate-parallel plane. The near-field transducer also includes a composite layer deposited on the substrate-parallel plane. The composite layer has a first layer of the plasmonic material and a second layer of an insertion material adjacent the substrate. The insertion material reduces plastic deformation of the near-field transducer at elevated temperatures.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: August 12, 2014
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Michael Christopher Kautzky, Amit Itagi, Michael Allen Seigler