Patents by Inventor Michael Anthony Klug

Michael Anthony Klug has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190121142
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 25, 2019
    Inventors: ROBERT DALE TEKOLSTE, MICHAEL ANTHONY KLUG, BRIAN T. SCHOWENGERDT
  • Publication number: 20190111642
    Abstract: An example system for molding a photocurable material into a planar object includes a first mold structure having a first mold surface, a second mold structure having a second mold surface, and one or more protrusions disposed along at least one of the first mold surface or the second mold surface. During operation, the system is configured to position the first and second mold structures such that the first and second mold surfaces face each other with the one or more protrusions contacting the opposite mold surface, and a volume having a total thickness variation (TTV) of 500 nm or less is defined between the first and second mold surfaces. The system is further configured to receive the photocurable material in the volume, and direct radiation at the one or more wavelengths into the volume.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 18, 2019
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Roy Matthew Patterson, Michael Anthony Klug, Charles Scott Carden
  • Publication number: 20190114480
    Abstract: Systems and methods for eye pose identification using features of an eye are described. Embodiments of the systems and methods can include segmenting an iris of an eye in the eye image to obtain pupillary and limbic boundaries of the eye, determining two angular coordinates (e.g., pitch and yaw) of an eye pose using the pupillary and limbic boundaries of the eye, identifying an eye feature of the eye (e.g., an iris feature or a scleral feature), determining a third angular coordinate (e.g., roll) of the eye pose using the identified eye feature, and utilizing the eye pose measurement for display of an image or a biometric application. In some implementations, iris segmentation may not be performed, and the two angular coordinates are determined from eye features.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 18, 2019
    Inventors: Adrian Kaehler, Michael Anthony Klug, Gholamreza Amayeh
  • Patent number: 10261318
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: April 16, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Robert Dale TeKolste, Michael Anthony Klug, Brian T. Schowengerdt
  • Patent number: 10254454
    Abstract: Architectures are provided for selectively incoupling one or more streams of light from a multiplexed light stream into a waveguide. The multiplexed light stream can have light with different characteristics (e.g., different wavelengths and/or different polarizations). The waveguide can comprise in-coupling elements that can selectively couple one or more streams of light from the multiplexed light stream into the waveguide while transmitting one or more other streams of light from the multiplexed light stream.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: April 9, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Brian T. Schowengerdt, Michael Nevin Miller, Vikramjit Singh, Christophe Peroz, Pierre St. Hilaire, Jie Sun
  • Publication number: 20190086674
    Abstract: A head mounted display system can include a camera, at least one waveguide, at least one coupling optical element that is configured such that light is coupled into said waveguide and guided therein, and at least one out-coupling element. The at least one out-coupling element can be configured to couple light that is guided within said waveguide out of said waveguide and direct said light to said camera. The camera can be disposed in an optical path with respect to said at least one out-coupling optical element to receive at least a portion of the light that is coupled into said waveguide via the coupling element and guided therein and that is coupled out from said waveguide by said out-coupling coupling element such that images may be captured by said camera.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 21, 2019
    Inventors: Asif Sinay, Barak Freedman, Michael Anthony Klug, Chulwoo Oh, Nizan Meitav
  • Publication number: 20180374266
    Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
    Type: Application
    Filed: May 16, 2018
    Publication date: December 27, 2018
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
  • Patent number: 10163010
    Abstract: Systems and methods for eye pose identification using features of an eye are described. Embodiments of the systems and methods can include segmenting an iris of an eye in the eye image to obtain pupillary and limbic boundaries of the eye, determining two angular coordinates (e.g., pitch and yaw) of an eye pose using the pupillary and limbic boundaries of the eye, identifying an eye feature of the eye (e.g., an iris feature or a scleral feature), determining a third angular coordinate (e.g., roll) of the eye pose using the identified eye feature, and utilizing the eye pose measurement for display of an image or a biometric application. In some implementations, iris segmentation may not be performed, and the two angular coordinates are determined from eye features.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: December 25, 2018
    Assignee: Magic Leap, Inc.
    Inventors: Adrian Kaehler, Michael Anthony Klug, Gholamreza Amayeh
  • Patent number: 10156725
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: December 18, 2018
    Assignee: MAGIC LEAP, INC.
    Inventors: Robert Dale TeKolste, Michael Anthony Klug, Brian T. Schowengerdt
  • Publication number: 20180356639
    Abstract: In some embodiments, an augmented reality system includes at least one waveguide that is configured to receive and redirect light toward a user, and is further configured to allow ambient light from an environment of the user to pass therethrough toward the user. The augmented reality system also includes a first adaptive lens assembly positioned between the at least one waveguide and the environment, a second adaptive lens assembly positioned between the at least one waveguide and the user, and at least one processor operatively coupled to the first and second adaptive lens assemblies. Each lens assembly of the augmented reality system is selectively switchable between at least two different states in which the respective lens assembly is configured to impart at least two different optical powers to light passing therethrough, respectively.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Jason Schaefer, Hui-Chuan Cheng, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Michael Anthony Klug
  • Publication number: 20180284585
    Abstract: Examples of light projector systems for directing input light from a light source to a spatial light modulator are provided. For example, an optical device is disclosed which includes a first surface having a diffractive optical element, a second surface normal to the first surface, and a third surface arranged at an angle to the second surface. The third surface may be a beam splitting surface that is reflective to light of a first state and transmissive to light of a second state. The diffractive optical element may receive an input beam made up of light having the first state, and convert the input beam into at least a first diffracted beam at a first diffraction angle such that the first diffracted beam is directed toward the third surface and is reflected by the third surface in a direction substantially parallel to the first surface.
    Type: Application
    Filed: March 21, 2018
    Publication date: October 4, 2018
    Inventors: Jahja Trisnadi, Pierre St. Hilaire, Hui-Chuan Cheng, Clinton Carlisle, Michael Anthony Klug, Kevin Richard Curtis
  • Publication number: 20180284460
    Abstract: Illuminations systems that separate different colors into laterally displaced beams may be used to direct different color image content into an eyepiece for displaying images in the eye. Such an eyepiece may be used, for example, for an augmented reality head mounted display. Illumination systems may be provided that utilize one or more waveguides to direct light from a light source towards a spatial light modulator. Light from the spatial light modulator may be directed towards an eyepiece. Some aspects of the invention provide for light of different colors to be outcoupled at different angles from the one or more waveguides and directed along different beam paths.
    Type: Application
    Filed: March 21, 2018
    Publication date: October 4, 2018
    Inventors: Hui-Chuan Cheng, Chulwoo Oh, Clinton Carlisle, Michael Anthony Klug, William Molteni
  • Publication number: 20180275394
    Abstract: An augmented reality (AR) device is described with a display system configured to adjust an apparent distance between a user of the AR device and virtual content presented by the AR device. The AR device includes a first tunable lens that change shape in order to affect the position of the virtual content. Distortion of real-world content on account of the changes made to the first tunable lens is prevented by a second tunable lens that changes shape to stay substantially complementary to the optical configuration of the first tunable lens. In this way, the virtual content can be positioned at almost any distance relative to the user without degrading the view of the outside world or adding extensive bulk to the AR device. The augmented reality device can also include tunable lenses for expanding a field of view of the augmented reality device.
    Type: Application
    Filed: March 22, 2018
    Publication date: September 27, 2018
    Applicant: Magic Leap, Inc.
    Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin, Brian T. Schowengerdt, Michael Anthony Klug, Jahja I. Trisnadi
  • Publication number: 20180275409
    Abstract: Examples of eye-imaging apparatus using diffractive optical elements are provided. For example, an optical device comprises a substrate having a proximal surface and a distal surface, a first coupling optical element disposed on one of the proximal and distal surfaces of the substrate, and a second coupling optical element disposed on one of the proximal and distal surfaces of the substrate and offset from the first coupling optical element. The first coupling optical element can be configured to deflect light at an angle to totally internally reflect (TIR) the light between the proximal and distal surfaces and toward the second coupling optical element, and the second coupling optical element can be configured to deflect at an angle out of the substrate. The eye-imaging apparatus can be used in a head-mounted display such as an augmented or virtual reality display.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 27, 2018
    Inventors: Chunyu Gao, Chulwoo Oh, Michael Anthony Klug, Evyatar Bluzer
  • Publication number: 20180231702
    Abstract: Metasurfaces provide compact optical elements in head-mounted display systems to, e.g., incouple light into or outcouple light out of a waveguide. The metasurfaces may be formed by a plurality of repeating unit cells, each unit cell comprising two sets or more of nanobeams elongated in crossing directions: one or more first nanobeams elongated in a first direction and a plurality of second nanobeams elongated in a second direction. As seen in a top-down view, the first direction may be along a y-axis, and the second direction may be along an x-axis. The unit cells may have a periodicity in the range of 10 nm to 1 ?m, including 10 nm to 500 nm or 300 nm to 500 nm. Advantageously, the metasurfaces provide diffraction of light with high diffraction angles and high diffraction efficiencies over a broad range of incident angles and for incident light with circular polarization.
    Type: Application
    Filed: January 25, 2018
    Publication date: August 16, 2018
    Inventors: Dianmin Lin, Michael Anthony Klug, Pierre St. Hilaire, Mauro Melli, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20180217395
    Abstract: Antireflection coatings for metasurfaces are described herein. In some embodiments, the metasurface may include a substrate, a plurality of nanostructures thereon, and an antireflection coating disposed over the nanostructures. The antireflection coating may be a transparent polymer, for example a photoresist layer, and may have a refractive index lower than the refractive index of the nanostructures and higher than the refractive index of the overlying medium (e.g., air). Advantageously, the antireflection coatings may reduce or eliminate ghost images in an augmented reality display in which the metasurface is incorporated.
    Type: Application
    Filed: January 24, 2018
    Publication date: August 2, 2018
    Inventors: Dianmin Lin, Michael Anthony Klug, Pierre St. Hilaire, Mauro Melli, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20180210146
    Abstract: An eyepiece waveguide for an augmented reality. The eyepiece waveguide can include a transparent substrate with an input coupler region, first and second orthogonal pupil expander (OPE) regions, and an exit pupil expander (EPE) region. The input coupler region can be positioned between the first and second OPE regions and can divide and re-direct an input light beam that is externally incident on the input coupler region into first and second guided light beams that propagate inside the substrate, with the first guided beam being directed toward the first OPE region and the second guided beam being directed toward the second OPE region. The first and second OPE regions can respectively divide the first and second guided beams into a plurality of replicated, spaced-apart beams. The EPE region can re-direct the replicated beams from both the first and second OPE regions such that they exit the substrate.
    Type: Application
    Filed: January 22, 2018
    Publication date: July 26, 2018
    Inventors: MICHAEL ANTHONY KLUG, ROBERT DALE TEKOLSTE, WILLIAM HUDSON WELCH, ERIC BROWY
  • Publication number: 20180164645
    Abstract: Soft-imprint alignment processes for patterning liquid crystal polymer layers via contact with a reusable alignment template are described herein. An example soft-imprint alignment process includes contacting a liquid crystal polymer layer with a reusable alignment template that has a desired surface alignment pattern such that the liquid crystal molecules of the liquid crystal polymer are aligned to the surface alignment pattern via chemical, steric, or other intermolecular interaction. The patterned liquid crystal polymer layer may then be polymerized and separated from the reusable alignment template. The process can be repeated many times. The reusable alignment template may include a photo-alignment layer that does not comprise surface relief structures that correspond to the surface alignment pattern and a release layer above this photo-alignment layer. A reusable alignment template and methods of fabricating the same are also disclosed.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 14, 2018
    Inventors: Chulwoo Oh, Chieh Chang, Sharad Bhagat, Michael Anthony Klug
  • Publication number: 20180143470
    Abstract: An optical device includes a liquid crystal layer having a first plurality of liquid crystal molecules arranged in a first pattern and a second plurality of liquid crystal molecules arranged in a second pattern. The first and the second pattern are separated from each other by a distance of about 20 nm and about 100 nm along a longitudinal or a transverse axis of the liquid crystal layer. The first and the second plurality of liquid crystal molecules are configured as first and second grating structures that can redirect light of visible or infrared wavelengths.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 24, 2018
    Inventors: Chulwoo Oh, Mauro Melli, Christophe Peroz, Vikramjit Singh, Frank Xu, Michael Anthony Klug
  • Publication number: 20180113311
    Abstract: An augmented reality display system is configured to direct a plurality of parallactically-disparate intra-pupil images into a viewer's eye. The parallactically-disparate intra-pupil images provide different parallax views of a virtual object, and impinge on the pupil from different angles. In the aggregate, the wavefronts of light forming the images approximate a continuous divergent wavefront and provide selectable accommodation cues for the user, depending on the amount of parallax disparity between the intra-pupil images. The amount of parallax disparity is selected using a light source that outputs light for different images from different locations, with spatial differences in the locations of the light output providing differences in the paths that the light takes to the eye, which in turn provide different amounts of parallax disparity.
    Type: Application
    Filed: October 20, 2017
    Publication date: April 26, 2018
    Inventors: Michael Anthony Klug, Robert Konrad, Gordon Wetzstein, Brian T. Schowengerdt, Michal Beau Vaughn