Patents by Inventor Michael Arnz

Michael Arnz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10113864
    Abstract: A method for determining a registration error of a feature on a mask, including providing a first aerial image that was captured by means of a position measuring device and includes at least the feature, simulating, from pattern specifications of the mask, a second aerial image that includes at least the feature, taking into account at least one effect that causes distortion of the first aerial image, and determining the registration error of the feature as the distance of the position of the feature in the first aerial image from the position of the feature in the second aerial image. Also provided is a method for simulating an aerial image from pattern specifications of a mask and a position measuring device for carrying out the method.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: October 30, 2018
    Assignees: Carl Zeiss SMT GmbH, Carl Zeiss Meditec AG
    Inventors: Michael Arnz, Dirk Seidel, Gerd Klose
  • Patent number: 10012911
    Abstract: A projection exposure apparatus includes a projection lens, a wavefront manipulator and a wavefront measuring device for measuring a wavefront in the projection lens. The wavefront measuring device includes a Moiré grating arrangement having an object grating and an image grating which are designed to be arranged in an object plane and an image plane, respectively, of the projection lens. The object grating and the image grating are coordinated with one another in a manner true to scale in such a way as to generate a Moiré superimposition pattern from an imaging of the object grating onto the image plane and the image grating. The Moiré grating arrangement is designed in such a way as to simultaneously generate the Moiré superimposition pattern for a plurality of field points of an object field in the object plane and/or of an image field in the image plane.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: July 3, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Arnz, Sascha Bleidistel, Toralf Gruner, Joachim Hartjes, Markus Schwab
  • Publication number: 20170336714
    Abstract: A projection exposure apparatus includes a projection lens, a wavefront manipulator and a wavefront measuring device for measuring a wavefront in the projection lens. The wavefront measuring device includes a Moiré grating arrangement having an object grating and an image grating which are designed to be arranged in an object plane and an image plane, respectively, of the projection lens. The object grating and the image grating are coordinated with one another in a manner true to scale in such a way as to generate a Moiré superimposition pattern from an imaging of the object grating onto the image plane and the image grating. The Moiré grating arrangement is designed in such a way as to simultaneously generate the Moiré superimposition pattern for a plurality of field points of an object field in the object plane and/or of an image field in the image plane.
    Type: Application
    Filed: June 9, 2017
    Publication date: November 23, 2017
    Inventors: Michael Arnz, Sascha Bleidistel, Toralf Gruner, Joachim Hartjes, Markus Schwab
  • Patent number: 9797805
    Abstract: A test object for measuring the point spread function (PSF) of an optical system having a given Airy diameter (dAiry) comprises a structure to be imaged having a plurality of structure elements to be imaged, wherein the structure elements are embodied and arranged in such a way that the structure has at least two axes of symmetry.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: October 24, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Lars Stoppe, Robert Pomraenke, Michael Arnz
  • Patent number: 9786046
    Abstract: A method for determining a lateral offset of a pattern on a substrate relative to a desired position with the steps: a) providing a plurality of measurement and simulation images of the pattern with equidistant defocus positions, b) forming a plurality of first and second pairs, which each has a measurement image and a simulation image, wherein each first pair has the same first focal distance and each second pair has the same second focal distance, being different from the first focal distance, of the defocus positions thereof, and determining a first and second lateral distance of the patterns for each first and second pair, respectively, c) determining a first and a second linear fit line based on the determined first and second lateral distances, respectively, and d) determining the lateral offset of the pattern on the substrate relative to the desired position using the linear fit lines of step c).
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: October 10, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Arnz, Dirk Seidel
  • Publication number: 20160195387
    Abstract: A method for determining a registration error of a feature on a mask, including providing a first aerial image that was captured by means of a position measuring device and includes at least the feature, simulating, from pattern specifications of the mask, a second aerial image that includes at least the feature, taking into account at least one effect that causes distortion of the first aerial image, and determining the registration error of the feature as the distance of the position of the feature in the first aerial image from the position of the feature in the second aerial image. Also provided is a method for simulating an aerial image from pattern specifications of a mask and a position measuring device for carrying out the method.
    Type: Application
    Filed: February 26, 2016
    Publication date: July 7, 2016
    Inventors: Michael Arnz, Dirk Seidel, Gerd Klose
  • Patent number: 9377415
    Abstract: A measuring device (40) for measuring an illumination property of an illumination system (12), which is configured for two-dimensional irradiation of a substrate (24) arranged in an illumination plane (21) with illumination radiation (20). Two differing measurement beam paths (52, 54) are formed in the measuring device, each arranged to guide the illumination radiation emitted by the illumination system onto a spatially resolving intensity detector (42) of the measuring device. A first (52) of the measurement beam paths is arranged to measure an intensity distribution in the illumination plane and the second (54) of the measurement beam paths is arranged to measure an intensity distribution in a pupil of the illumination system. The measuring device also includes an imaging optical unit (44) arranged in the first measurement beam path (52) such that the illumination radiation guided in the first measurement beam path passes through the imaging optical unit.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: June 28, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Arnz, Markus Deguenther
  • Publication number: 20160104275
    Abstract: A method for determining a lateral offset of a pattern on a substrate relative to a desired position with the steps: a) providing a plurality of measurement and simulation images of the pattern with equidistant defocus positions, b) forming a plurality of first and second pairs, which each has a measurement image and a simulation image, wherein each first pair has the same first focal distance and each second pair has the same second focal distance, being different from the first focal distance, of the defocus positions thereof, and determining a first and second lateral distance of the patterns for each first and second pair, respectively, c) determining a first and a second linear fit line based on the determined first and second lateral distances, respectively, and d) determining the lateral offset of the pattern on the substrate relative to the desired position using the linear fit lines of step c).
    Type: Application
    Filed: October 13, 2015
    Publication date: April 14, 2016
    Inventors: Michael Arnz, Dirk Seidel
  • Patent number: 9303975
    Abstract: A method for determining a registration error of a feature on a mask, including providing a first aerial image that was captured by means of a position measuring device and includes at least the feature, simulating, from pattern specifications of the mask, a second aerial image that includes at least the feature, taking into account at least one effect that causes distortion of the first aerial image, and determining the registration error of the feature as the distance of the position of the feature in the first aerial image from the position of the feature in the second aerial image. Also provided is a method for simulating an aerial image from pattern specifications of a mask and a position measuring device for carrying out the method.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: April 5, 2016
    Assignees: Carl Zeiss SMT GmbH, Carl Zeiss SMS GmbH, Carl Zeiss Meditec AG
    Inventors: Michael Arnz, Dirk Seidel, Gerd Klose
  • Patent number: 9297994
    Abstract: There is provided an autofocus device for an imaging device which has an imaging lens system with a first focal plane, an object stage for holding an object and a first movement module for the relative movement of object stage and imaging lens system, wherein the autofocus device comprises an image-recording module with a second focal plane the position of which relative to the first focal plane is known, a second movement module for the relative movement of object stage and image-recording module, a focus module for producing a two-dimensional, intensity-modulated focusing image in a focus module plane which intersects the second focal plane and a control module which controls the image-recording module for focusing the imaging device, which then records a first two-dimensional image of the object together with the focusing image during a predetermined first exposure time, and wherein the control module, using the first two-dimensional image recorded by means of the image-recording module and taking into
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: March 29, 2016
    Assignees: Carl Zeiss SMS GmbH, Carl Zeiss SMT GmbH
    Inventors: Sascha Perlitz, Michael Arnz, Dirk Seidel
  • Patent number: 9229209
    Abstract: An autofocus device for an imaging device is provided, which has an imaging optic having a first focal plane and an object table for moving an object to be imaged relative to the first focal plane, wherein said autofocus device comprises a) an image recording module having a second focal plane, the location thereof relative to the first focal plane being known, b) a lighting module (BM) for imaging a focusing image along a lighting beam path in a focusing image plane such that, if the object is positioned in a target position at a predetermined distance to the second focal plane, the lighting beam path is folded because of reflection on the object and the focusing image, which lies in the focusing image plane, intersects the second focal plane or lies therein, and c) a control module, which activates the object table to focus the imaging device so that the object is positioned in the target position, from a signal of the image recording module, which the image recording module generates on the basis of the re
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: January 5, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Arnz, Mikhail Levtonov, Gerd Klose, Volkmar Betz
  • Publication number: 20150355052
    Abstract: A test object for measuring the point spread function (PSF) of an optical system having a given Airy diameter (dAiry) comprises a structure to be imaged having a plurality of structure elements to be imaged, wherein the structure elements are embodied and arranged in such a way that the structure has at least two axes of symmetry.
    Type: Application
    Filed: May 8, 2015
    Publication date: December 10, 2015
    Inventors: Lars Stoppe, Robert Pomraenke, Michael Arnz
  • Patent number: 9014505
    Abstract: The position of a first structure relative to a second structure can be determined by a) providing a reference image containing the first structure, b) providing a measurement image containing the second structure, in which the measurement image is recorded with an image sensor with a plurality of sensor pixels and the image sensor has at least one known faulty sensor pixel, c) producing a masked measurement image with a masked region that corresponds to the second structure, and forming an optimization function of the shift of the masked measurement image and the reference image relative to each other, d) determining the extreme value of the optimization function and determining the optimum value of the shift based on the extreme value, and e) determining the position of the first structure relative to the second structure on the basis of the optimum shift value.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Michael Arnz
  • Publication number: 20150015875
    Abstract: A measuring device (40) for measuring an illumination property of an illumination system (12), which is configured for two-dimensional irradiation of a substrate (24) arranged in an illumination plane (21) with illumination radiation (20). Two differing measurement beam paths (52, 54) are formed in the measuring device, each arranged to guide the illumination radiation emitted by the illumination system onto a spatially resolving intensity detector (42) of the measuring device. A first (52) of the measurement beam paths is arranged to measure an intensity distribution in the illumination plane and the second (54) of the measurement beam paths is arranged to measure an intensity distribution in a pupil of the illumination system. The measuring device also includes an imaging optical unit (44) arranged in the first measurement beam path (52) such that the illumination radiation guided in the first measurement beam path passes through the imaging optical unit.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 15, 2015
    Inventors: Michael Arnz, Markus Deguenther
  • Patent number: 8731273
    Abstract: A method for measuring the relative local position error of one of the sections of an object that is exposed section by section, in particular of a lithography mask or of a wafer, is provided, each exposed section having a plurality of measurement marks, wherein a) a region of the object which is larger than the one section is imaged in magnified fashion and is detected as an image, b) position errors of the measurement marks contained in the detected image are determined on the basis of the detected image, c) corrected position errors are derived by position error components which are caused by the magnified imaging and detection being extracted from the determined position errors of the measurement marks, d) the relative local position error of the one section is derived on the basis of the corrected position errors of the measurement marks.
    Type: Grant
    Filed: November 28, 2009
    Date of Patent: May 20, 2014
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Michael Arnz, Dirk Beyer, Wolfgang Harnisch, Thomas Scheruebl
  • Patent number: 8693805
    Abstract: A method is provided for determining the position of a first structure (8a) relative to a second structure (8b) or a part thereof, said method having the steps of: a) providing a first picture (F1) having a multiplicity of pixels and which contains the first structure, b) providing a second picture (F2) having a multiplicity of pixels and which contains the second structure, c) forming an optimization function with the displacement of the two pictures relative to one another as parameter, the optimization function overlying the two pictures and masking the overlay such that in a determination of an extreme value of the optimization function a contribution is made only by the region of the overlay that corresponds to the second structure or the part thereof, d) ascertaining the extreme value of the optimization function and determining the optimal value of the displacement based on the extreme value of the optimization function, and e) determining the position of the first structure relative to the second stru
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: April 8, 2014
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Michael Arnz, Dirk Seidel
  • Patent number: 8694929
    Abstract: A method and an apparatus for determining the position of a structure on a mask for microlithography, in which the position is determined by comparing an aerial image, measured by a recording device, of a portion of the mask with an aerial image determined by simulation. The position determination includes carrying out a plurality of such comparisons which differ from one another with regard to the input parameters of the simulation.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 8, 2014
    Assignees: Carl Zeiss SMT GmbH, Carl Zeiss SMS GmbH
    Inventors: Dirk Seidel, Michael Arnz
  • Patent number: 8473237
    Abstract: A method for calibrating a specimen stage of a metrology system is provided, in which a specimen that has multiple marks is positioned successively in different calibration positions, each mark is positioned in the photography range of an optical system by means of the specimen stage in each calibration position of the specimen, and the mark position is measured using the optical system. A model is set up that describes positioning errors of the specimen stage using a system of functions having calibration parameters to be determined. The model takes into consideration at least one systematic measurement error that occurs during the measurement of the mark positions. The values of the calibration parameters are determined based on the model with consideration of the measured mark positions.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: June 25, 2013
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Alexander Huebel, Matthias Manger, Gerd Klose, Uwe Schellhorn, Michael Arnz
  • Patent number: 8457411
    Abstract: The position of an edge of a marker structure in an image of the marker structure is determined with subpixel accuracy. A discrete intensity profile of the edge, having profile pixels, is derived from the image pixels, and a continuous profile function of the edge is determined based on the profile pixels. Profile pixels whose intensity values are near an intensity threshold value are selected as evaluation pixels. Based on the evaluation pixels, a curve of continuous intensity is calculated. A position coordinate at which the intensity value of the continuous intensity curve matches the threshold value is selected as a first position coordinate, and the distance is determined between the first position coordinate and the position coordinate of the evaluation pixel that, from among the evaluation pixels previously selected, has the closest intensity value to the threshold value.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: June 4, 2013
    Assignee: Carl Zeiss SMS GmbH
    Inventor: Michael Arnz
  • Publication number: 20130062501
    Abstract: There is provided an autofocus device for an imaging device which has an imaging lens system with a first focal plane, an object stage for holding an object, and a first movement module for the relative movement of object stage and imaging lens system. The autofocus device comprises an image-recording module with a second focal plane, a second movement module for the relative movement of object stage and image-recording module, and a control module which controls the image-recording module for focusing the imaging device. The control module controls the first movement module such that evaluated change in distance between the object stage and the imaging lens system is carried out, and controls the second movement module such that, during the first exposure time for recording the first two-dimensional image, the object stage is moved relative to the image-recording module in a plane parallel to the second focal plane.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 14, 2013
    Applicants: CARL ZEISS SMT GMBH, CARL ZEISS SMS GMBH
    Inventors: Sascha Perlitz, Michael Arnz, Dirk Seidel