Patents by Inventor Michael Astley

Michael Astley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102871
    Abstract: A device (15) including a piezoelectric sensor (16). The piezoelectric sensor (16) includes a layer of piezoelectric material (7) disposed between a number of sensing electrodes (4, 12, 13) and at least one counter electrode (3). The device (15) also includes a controller (17) connected to the piezoelectric sensor (16). The sensing electrodes (4, 12, 13) are arranged to form one or more active regions (19). Each active region (19) includes one or more primary sensing electrodes (4,12) and one or more secondary sensing electrodes (4, 13). The secondary sensing electrodes (4, 13) are separated from the primary sensing electrodes (4, 12) by a perimeter (14). The controller (17) is configured, for each active region (19), to monitor primary piezoelectric charges induced on each primary sensing electrode (4, 12) and to monitor secondary piezoelectric charges induced on each secondary sensing electrode (4, 13).
    Type: Application
    Filed: January 21, 2022
    Publication date: March 28, 2024
    Inventors: Constantinos Tsangarides, Michael Astley, Riccardo Micci, Jiahao Li
  • Patent number: 11556202
    Abstract: An apparatus (2, 22) is described which includes a touch panel (1, 21). The touch panel (1, 21) includes a layer of piezoelectric material (4) disposed between a number of sensing electrodes (5, 23, 24) and at least one counter electrode (6). The apparatus (2, 22) also includes a touch controller (3) connected to the touch panel (1, 21). The touch controller (3) is configured to determine, in response to receiving piezoelectric signals (7) from one or more of the sensing electrodes (5, 23, 24), a location (9) and an applied force (10) corresponding to a user interaction (11) with the touch panel (1, 21). The touch controller (3) is configured to determine a capacitance value (20) of one or more of the sensing electrodes (5). The touch controller is configured to operate in a force-based mode, a capacitance-based mode or a mixed force-capacitance mode depending on the type of input received.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: January 17, 2023
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Arokia Nathan, Michael Astley, Constantinos Tsangarides, Paridhi Sharma, Riccardo Micci, Xiang Cheng, Jiahao Li
  • Patent number: 11550418
    Abstract: An apparatus (73) for processing signals from a touch panel (10) is described. The touch panel (10) includes a layer of piezoelectric material (16) disposed between a number of sensing electrodes (14, 20) and at least one common electrode (15). The apparatus (73) includes a capacitive touch controller (69) for connection to the sensing electrodes (14, 20). The apparatus (73) also includes a switch network (74) including a number of inputs for connection to some or all of the sensing electrodes (14, 20), and an output connected to system ground or a common mode voltage (VCM). The apparatus (73) also includes a second circuit (24, 44) for connection to the at least one common electrode (15) and configured to generate, based on signals received from the at least one common electrode, a second pressure signal (30) indicative of a total pressure applied to the touch panel (10).
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: January 10, 2023
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Michael Astley, Babak Bastani, Riccardo Micci, Arokia Nathan, Paul Routley, Xiang Cheng, Jiahao Li
  • Publication number: 20220374097
    Abstract: An apparatus is described which it a flexible touch panel (21). The flexible touch panel (21) includes a layer of piezoelectric material (9) arranged between a number of first electrodes (7, 8) and at least one second electrode (8,14). The apparatus also includes a device (3) connected to the first electrodes (7, 8) and configured to determine one or more radii of curvature (R1, R2) of the flexible touch panel (21) based on signals received from one or more of the first electrodes (7, 8).
    Type: Application
    Filed: July 3, 2020
    Publication date: November 24, 2022
    Inventors: Michael Astley, Xiang Cheng, Arokia Nathan
  • Patent number: 11494022
    Abstract: A force-sensing touch panel (31) is described which includes a layer structure stacked in a thickness direction between first and second surfaces. The layer structure includes from first surface to second surface, a number of first electrodes (7) and a number of second electrodes (8), a layer of piezoelectric material (9), and a number of third electrodes (30). The first and second electrodes (7, 8) are configured to define a coordinate system for sensing a location of a force applied to the touch panel in a plane perpendicular to the thickness direction. The third electrodes (30) are configured such that signals received from the first, second and third electrodes (7, 8, 30) enable determining unique locations corresponding to two or more forces applied to the touch panel (31) concurrently.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: November 8, 2022
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Michael Astley, Arokia Nathan, Constantinos Tsangarides, Paridhi Sharma, Antonio Afonso Bras Ferreira Marques, Xiang Cheng, Jiahao Li
  • Patent number: 11481061
    Abstract: An apparatus (73) for processing signals from a touch panel (10) is described. The touch panel (10) includes a layer of piezoelectric material (16) disposed between a number of sensing electrodes (14, 20) and at least one common electrode (15). The apparatus (73) includes a capacitive touch controller (69) for connection to the sensing electrodes (14, 20). The apparatus (73) also includes a switch network (74) including a number of inputs for connection to some or all of the sensing electrodes (14, 20), and an output connected to system ground or a common mode voltage (VCM). The apparatus (73) also includes a second circuit (24, 44) for connection to the at least one common electrode (15) and configured to generate, based on signals received from the at least one common electrode, a second pressure signal (30) indicative of a total pressure applied to the touch panel (10).
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: October 25, 2022
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Michael Astley, Babak Bastani, Riccardo Micci, Arokia Nathan, Paul Routley, Xiang Cheng, Jiahao Li
  • Patent number: 11474653
    Abstract: A device (1) includes a body (2) and a touch panel (3) supported by, integrated with, or underlying the body (2). The touch panel (3) includes a layer of piezoelectric material (5) disposed between a plurality of first electrodes (6) and at least one second electrode (7). The device (1) also includes at least one second piezoelectric input region (8) supported by, integrated with, or underlying a portion of the body (2) which does not correspond to the touch panel (3). The device (1) is configured to receive user input using the touch panel (3) and/or at least one piezoelectric input region (8).
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: October 18, 2022
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Antonio Afonso Bras Ferreira Marques, Arokia Nathan, Michael Astley, Jiahao Li, Xiang Cheng, Paridhi Sharma, Constantinos Tsangarides
  • Patent number: 11429240
    Abstract: A touch sensor (1) for combined capacitive touch and force sensing is described. The touch sensor (1) includes number plurality of first electrodes (4) and a number of second electrodes (5). The second electrodes (5) are insulated from the first electrodes (4). The first and second electrodes (4, 5) form a grid for capacitive touch sensing. The touch sensor (1) also includes a transparent cover (6). The touch sensor (1) also includes a transparent piezoelectric film (3) arranged between the transparent cover (6) and the first and second electrodes (4, 5). The touch sensor (1) also includes a patterned counter electrode (8) disposed between the transparent piezoelectric film (3) and the transparent cover (6). The patterned counter electrode (8) is a conductive grid formed from the union of plurality of counter electrode line elements (9). A pitch of the counter electrode line elements (9) is larger than a pitch of the first electrodes (4) and/or second electrodes (5).
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: August 30, 2022
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Constantinos Tsangarides, Paridhi Sharma, Michael Astley, Arokia Nathan, Xiang Cheng, Jiahao Li
  • Patent number: 11353980
    Abstract: An apparatus for processing signals from a touch panel. The touch panel includes a layer of piezoelectric material disposed between a number of sensing electrodes and one or more common electrodes. The apparatus includes a capacitive touch controller for connection to the sensing electrodes and a switch network including inputs for connection to the sensing electrodes and an output connected to system ground or a common mode voltage. The apparatus includes a circuit for connection to the common electrodes and to generate, for each common electrode, a corresponding pressure signal indicative of a pressure applied to the touch panel proximate to that common electrode. The apparatus includes a controller to control the switch network to couple any connected sensing electrodes to system ground or the common mode voltage during a pressure measurement period, and to sample the one or more second pressure signals during the pressure measurement period.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: June 7, 2022
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Michael Astley, Babak Bastani, Riccardo Micci, Arokia Nathan, Paul Routley, Xiang Cheng, Jiahao Li
  • Publication number: 20220171489
    Abstract: An apparatus (2, 22) is described which includes a touch panel (1, 21). The touch panel (1, 21) includes a layer of piezoelectric material (4) disposed between a number of sensing electrodes (5, 23, 24) and at least one counter electrode (6). The apparatus (2, 22) also includes a touch controller (3) connected to the touch panel (1, 21). The touch controller (3) is configured to determine, in response to receiving piezoelectric signals (7) from one or more of the sensing electrodes (5, 23, 24), a location (9) and an applied force (10) corresponding to a user interaction (11) with the touch panel (1, 21). The touch controller (3) is configured to determine a capacitance value (20) of one or more of the sensing electrodes (5). The touch controller is configured to operate in a force-based mode, a capacitance-based mode or a mixed force-capacitance mode depending on the type of input received.
    Type: Application
    Filed: March 13, 2020
    Publication date: June 2, 2022
    Inventors: Arokia Nathan, Michael Astley, Constantinos Tsangarides, Paridhi Sharma, Riccardo Micci, Xiang Cheng, Jiahao Li
  • Publication number: 20220147187
    Abstract: A touch sensor (1) for combined capacitive touch and force sensing is described. The touch sensor (1) includes number plurality of first electrodes (4) and a number of second electrodes (5). The second electrodes (5) are insulated from the first electrodes (4). The first and second electrodes (4, 5) form a grid for capacitive touch sensing. The touch sensor (1) also includes a transparent cover (6). The touch sensor (1) also includes a transparent piezoelectric film (3) arranged between the transparent cover (6) and the first and second electrodes (4, 5). The touch sensor (1) also includes a patterned counter electrode (8) disposed between the transparent piezoelectric film (3) and the transparent cover (6). The patterned counter electrode (8) is a conductive grid formed from the union of plurality of counter electrode line elements (9). A pitch of the counter electrode line elements (9) is larger than a pitch of the first electrodes (4) and/or second electrodes (5).
    Type: Application
    Filed: January 23, 2020
    Publication date: May 12, 2022
    Inventors: Constantinos Tsangarides, Paridhi Sharma, Michael Astley, Arokia Nathan, Xiang Cheng, Jiahao Li
  • Publication number: 20220137767
    Abstract: A force-sensing touch panel (31) is described which includes a layer structure stacked in a thickness direction between first and second surfaces. The layer structure includes from first surface to second surface, a number of first electrodes (7) and a number of second electrodes (8), a layer of piezoelectric material (9), and a number of third electrodes (30). The first and second electrodes (7, 8) are configured to define a coordinate system for sensing a location of a force applied to the touch panel in a plane perpendicular to the thickness direction. The third electrodes (30) are configured such that signals received from the first, second and third electrodes (7, 8, 30) enable determining unique locations corresponding to two or more forces applied to the touch panel (31) concurrently.
    Type: Application
    Filed: February 17, 2020
    Publication date: May 5, 2022
    Inventors: Michael Astley, Arokia Nathan, Constantinos Tsangarides, Paridhi Sharma, Afonso Marques, Xiang Cheng, Jiahao Li
  • Patent number: 11294492
    Abstract: A method includes receiving (S1), from a touch panel (1), force values (23) corresponding to a plurality of piezoelectric sensors (5,6, 7), Each piezoelectric sensor corresponds to a physical location (xm, yn) on the touch panel. The method also includes receiving (S2) one or more user touch locations corresponding to user touches, The method also includes excluding (S5) all force values (23) corresponding to physical locations within a distance of a user touch location, and setting the remaining force values (23) as valid force values (S5). The method also includes interpolating and/or extrapolating (S6), based on the valid force values, one or more reconstructed force values (25) corresponding to same physical locations (xm, yn) as the respective excluded force values (23).
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: April 5, 2022
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Riccardo Micci, Babak Bastani, Matteo Vit, Arokia Nathan, Paul Routley, Michael Astley
  • Patent number: 11221703
    Abstract: An apparatus (22) for processing signals from a touch panel (10) is described. The touch panel (10) includes a layer of piezoelectric material (16) disposed between a plurality of sensing electrodes (14, 20) and at least one common electrode (15). The apparatus (22) includes a first circuit (23) for connection to the plurality of sensing electrodes (14, 20). The first circuit (23) is configured to generate one or more first pressure signals (29). Each first pressure signal (29) corresponds to one or more sensing electrodes (14, 20) and is indicative of a pressure acting on the touch panel (10) proximate to the corresponding one or more sensing electrodes (14, 20). The apparatus also includes a second circuit (24) for connection to the at least one common electrode (15). The second circuit (24) is configured to generate a second pressure signal (30) indicative of a total pressure applied to the touch panel (10).
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: January 11, 2022
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Paul Routley, Babak Bastani, Riccardo Micci, Arokia Nathan, Michael Astley, Xiang Cheng, Jiahao Li
  • Publication number: 20210373698
    Abstract: An apparatus (73) for processing signals from a touch panel (10) is described. The touch panel (10) includes a layer of piezoelectric material (16) disposed between a number of sensing electrodes (14, 20) and at least one common electrode (15). The apparatus (73) includes a capacitive touch controller (69) for connection to the sensing electrodes (14, 20). The apparatus (73) also includes a switch network (74) including a number of inputs for connection to some or all of the sensing electrodes (14, 20), and an output connected to system ground or a common mode voltage (VCM). The apparatus (73) also includes a second circuit (24, 44) for connection to the at least one common electrode (15) and configured to generate, based on signals received from the at least one common electrode, a second pressure signal (30) indicative of a total pressure applied to the touch panel (10).
    Type: Application
    Filed: August 11, 2021
    Publication date: December 2, 2021
    Inventors: Michael Astley, Babak Bastani, Riccardo Micci, Arokia Nathan, Paul Routley, Xiang Cheng, Jiahao Li
  • Publication number: 20210263633
    Abstract: An apparatus (73) for processing signals from a touch panel (10) is described. The touch panel (10) includes a layer of piezoelectric material (16) disposed between a number of sensing electrodes (14, 20) and one or more common electrodes (105). The apparatus (73) includes a capacitive touch controller (69) for connection to the sensing electrodes (14, 20). The apparatus (73) also includes a switch network (74) including a number of inputs for connection to some or all of the sensing electrodes (14, 20), and an output connected to system ground or a common mode voltage (VCM). The apparatus (73) also includes a second circuit (24, 44) for connection to the one or more common electrodes (105) and configured to generate, for each common electrode, a corresponding a second pressure signal (30) indicative of a pressure applied to the touch panel (10) proximate to that common electrode (105).
    Type: Application
    Filed: December 5, 2019
    Publication date: August 26, 2021
    Inventors: Michael Astley, Babak Bastani, Riccardo Micci, Arokia Nathan, Paul Routley, Xiang Cheng, Jiahao Li
  • Patent number: 11093082
    Abstract: An apparatus (73) for processing signals from a touch panel (10) is described. The touch panel (10) includes a layer of piezoelectric material (16) disposed between a number of sensing electrodes (14, 20) and at least one common electrode (15). The apparatus (73) includes a capacitive touch controller (69) for connection to the sensing electrodes (14, 20). The apparatus (73) also includes a switch network (74) including a number of inputs for connection to some or all of the sensing electrodes (14, 20), and an output connected to system ground or a common mode voltage (VCM). The apparatus (73) also includes a second circuit (24, 44) for connection to the at least one common electrode (15) and configured to generate, based on signals received from the at least one common electrode, a second pressure signal (30) indicative of a total pressure applied to the touch panel (10).
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: August 17, 2021
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Michael Astley, Babak Bastani, Riccardo Micci, Arokia Nathan, Paul Routley, Xiang Cheng, Jiahao Li
  • Patent number: 11093088
    Abstract: A device (116) for processing signals from a projected capacitance touch panel (43) is described. The projected capacitance touch panel (43) includes a layer of piezoelectric material (9) disposed between a number of sensing electrodes (7, 27) and at least one counter electrode (8). The device (116) includes a capacitive touch controller (84) having a number of measurement ports (122). The device (116) also includes a number of charge amplifiers (123). The device (116) also includes a number of terminals (C1, . . . , C5, D1, . . . , D5) for connection to the sensing electrodes (7, 27) of the projected capacitance touch panel (43). Each terminal (C1, . . . , C5, D1, . . . , D5) is connected to one of the measurement ports (122). Each terminal (C1, . . . , C5, D1, . . . , D5) is also connected to an input of one of the charge amplifiers (123) via a corresponding switch (SW) of a number of switches (117a, 117b).
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: August 17, 2021
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Mojtaba Bagheri, Babak Bastani, Jiahao Li, Xiang Cheng, Michael Astley
  • Publication number: 20210232257
    Abstract: An apparatus (22) for processing signals from a touch panel (10) is described. The touch panel (10) includes a layer of piezoelectric material (16) disposed between a plurality of sensing electrodes (14, 20) and at least one common electrode (15). The apparatus (22) includes a first circuit (23) for connection to the plurality of sensing electrodes (14, 20). The first circuit (23) is configured to generate one or more first pressure signals (29). Each first pressure signal (29) corresponds to one or more sensing electrodes (14, 20) and is indicative of a pressure acting on the touch panel (10) proximate to the corresponding one or more sensing electrodes (14, 20). The apparatus also includes a second circuit (24) for connection to the at least one common electrode (15). The second circuit (24) is configured to generate a second pressure signal (30) indicative of a total pressure applied to the touch panel (10).
    Type: Application
    Filed: June 6, 2019
    Publication date: July 29, 2021
    Inventors: Paul Routley, Babak Bastani, Riccardo Micci, Arokia Nathan, Michael Astley, Xiang Cheng, Jiahao Li
  • Publication number: 20210165550
    Abstract: An apparatus (73) for processing signals from a touch panel (10) is described. The touch panel (10) includes a layer of piezoelectric material (16) disposed between a number of sensing electrodes (14, 20) and at least one common electrode (15). The apparatus (73) includes a capacitive touch controller (69) for connection to the sensing electrodes (14, 20). The apparatus (73) also includes a switch network (74) including a number of inputs for connection to some or all of the sensing electrodes (14, 20), and an output, connected to system ground or a common mode voltage (VCM). The apparatus (73) also includes a second circuit (24, 44) for connection to the at least one common electrode (15) and configured to generate, based on signals received from the at least one common electrode, a second pressure signal (30) indicative of a total pressure applied to the touch panel (10).
    Type: Application
    Filed: June 6, 2019
    Publication date: June 3, 2021
    Inventors: Michael Astley, Babak Bastani, Riccardo Micci, Arokia Nathan, Paul Routley, Xiang Cheng, Jiahao Li