Patents by Inventor Michael B. Rice

Michael B. Rice has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7714366
    Abstract: Polysilicon electrical depletion in a polysilicon gate electrode is reduced by depositing the polysilicon under controlled conditions so as to vary the crystal grain size through the thickness of the polysilicon. The resulting CMOS transistor may have two or more depth-wise contiguous regions of respective crystalline grain size, and the selection of grain size may be directed to maximize dopant activation in the polysilicon near the gate dielectric and to tailor the resistance of the polysilicon above that first region and more distant from the gate dielectric. A region of polycrystalline silicon may have a varying grain size as a function of a distance measured from a surface of the dielectric film.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: May 11, 2010
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Kevin K. Chan, Jeffrey D. Gilbert, Kevin M. Houlihan, Glen L. Miles, James J. Quinlivan, Samuel C. Ramac, Michael B. Rice, Beth A. Ward
  • Patent number: 7094614
    Abstract: A method and apparatus are provided for controlling a CVD process used to deposit films on semiconductor substrates wherein the by-products of the reaction are measured and monitored during the reaction preferably using mass spectrometry and the results used to calculate the concentrations of the by-products and to control the CVD reaction process based on the by-product concentrations. An exemplary CVD process is the deposition of tungsten metal on a semiconductor wafer. A preferred method and apparatus uses a capillary gas sampling device for removing the by-product gases of the reaction as a feed for the mass spectrometer. The capillary gas sampling device is preferably connected to a differential pump.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: August 22, 2006
    Assignee: International Business Machines Corporation
    Inventors: Douglas S. Armbrust, John M. Baker, Arne W. Ballantine, Roger W. Cheek, Doreen D. DiMilia, Mark L. Reath, Michael B. Rice
  • Patent number: 7045372
    Abstract: A method and structure that provides a battery within an integrated circuit for providing voltage to low-current electronic devices that exist within the integrated circuit. The method includes Front-End-Of-Line (FEOL) processing for generating a layer of electronic devices on a semiconductor wafer, followed by Back-End-Of-Line (BEOL) integration for wires connecting the electronic devices together to form completed electrical circuits of the integrated circuit. The BEOL integration includes forming a multilayered structure of wiring levels on the layer of electronic devices. Each wiring level includes conductive metallization (e.g., metal-plated vias, conductive wiring lines, etc.) embedded in insulative material. The battery is formed during BEOL integration within one or more wiring levels, and the conductive metallization conductively couples positive and negative terminals of the battery to the electronic devices.
    Type: Grant
    Filed: August 2, 2003
    Date of Patent: May 16, 2006
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Robert A. Groves, Jennifer L. Lund, James S. Nakos, Michael B. Rice, Anthony K. Stamper
  • Patent number: 6893948
    Abstract: Polysilicon electrical depletion in a polysilicon gate electrode is reduced by depositing the polysilicon under controlled conditions so as to vary the crystal grain size through the thickness of the polysilicon. The resulting structure may have two or more depth-wise contiguous regions of respective crystalline grain size, and the selection of grain size is directed to maximize dopant activation in the polysilicon near the gate dielectric, and to tailor the resistance of the polysilicon above that first region and more distant from the gate dielectric. This method, and the resulting structure, are advantageously employed in forming FETs, and doped polysilicon resistors.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: May 17, 2005
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Kevin K. Chan, Jeffrey D. Gilbert, Kevin M. Houlihan, Glen L. Miles, James J. Quinlivan, Samuel C. Ramac, Michael B. Rice, Beth A. Ward
  • Publication number: 20040021201
    Abstract: A method and structure that provides a battery within an integrated circuit for providing voltage to low-current electronic devices that exist within the integrated circuit. The method includes Front-End-Of-Line (FEOL) processing for generating a layer of electronic devices on a semiconductor wafer, followed by Back-End-Of-Line (BEOL) integration for wires the electronic devices together to form completed electrical circuits of the integrated circuit. The BEOL integration includes forming a multilayered structure of wiring levels on the layer of electronic devices. Each wiring level includes conductive metallization (e.g., metal-plated vias, conductive wiring lines, etc.) embedded in insulative material. The battery is formed during BEOL integration within one or more wiring levels, and the conductive metallization conductively couples positive and negative terminals of the battery to the electronic devices.
    Type: Application
    Filed: August 2, 2003
    Publication date: February 5, 2004
    Inventors: Arne W. Ballantine, Robert A. Groves, Jennifer L. Lund, James S. Nakos, Michael B. Rice, Anthony K. Stamper
  • Publication number: 20040023476
    Abstract: Polysilicon electrical depletion in a polysilicon gate electrode is reduced by depositing the polysilicon under controlled conditions so as to vary the crystal grain size through the thickness of the polysilicon. The resulting structure may have two or more depth-wise contiguous regions of respective crystalline grain size, and the selection of grain size is directed to maximize dopant activation in the polysilicon near the gate dielectric, and to tailor the resistance of the polysilicon above that first region and more distant from the gate dielectric. This method, and the resulting structure, are advantageously employed in forming FETs, and doped polysilicon resistors.
    Type: Application
    Filed: July 11, 2003
    Publication date: February 5, 2004
    Applicant: International Business Machines
    Inventors: Arne W. Ballantine, Kevin K. Chan, Jeffrey D. Gilbert, Kevin M. Houlihan, Glen L. Miles, James J. Quinlivan, Samuel C. Ramac, Michael B. Rice, Beth A. Ward
  • Patent number: 6670263
    Abstract: Polysilicon electrical depletion in a polysilicon gate electrode is reduced by depositing the polysilicon under controlled conditions so as to vary the crystal grain size through the thickness of the polysilicon. The resulting structure may have two or more depth-wise contiguous regions of respective crystalline grain size, and the selection of grain size is directed to maximize dopant activation in the polysilicon near the gate dielectric, and to tailor the resistance of the polysilicon above that first region and more distant from the gate dielectric. This method, and the resulting structure, are advantageously employed in forming FETs, and doped polysilicon resistors.
    Type: Grant
    Filed: March 10, 2001
    Date of Patent: December 30, 2003
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Kevin K. Chan, Jeffrey D. Gilbert, Kevin M. Houlihan, Glen L. Miles, James J. Quinlivan, Samuel C. Ramac, Michael B. Rice, Beth A. Ward
  • Patent number: 6650000
    Abstract: A method and structure that provides a battery within an integrated circuit for providing voltage to low-current electronic devices that exist within the integrated circuit. The method includes Front-End-Of-Line (FEOL) processing for generating a layer of electronic devices on a semiconductor wafer, followed by Back-End-Of-Line (BEOL) integration for wires connecting the electronic devices together to form completed electrical circuits of the integrated circuit. The BEOL integration includes forming a multilayered structure of wiring levels on the layer of electronic devices. Each wiring level includes conductive metallization (e.g., metal-plated vias, conductive wiring lines, etc.) embedded in insulative material. The battery is formed during BEOL integration within one or more wiring levels, and the conductive metallization conductively couples positive and negative terminals of the battery to the electronic devices.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: November 18, 2003
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Robert A. Groves, Jennifer L. Lund, James S. Nakos, Michael B. Rice, Anthony K. Stamper
  • Patent number: 6489663
    Abstract: An integrated semiconducting device comprises a semiconducting substrate, a plurality of grounding strips disposed above the substrate in a lower metal level of the semiconducting device, an inductor positioned in an upper metal level of the semiconducting device, and a plurality of conducting vias connected to and extending away from the grounding strips towards the inductor. The inductor, conducting via, ground strips structure forms a Faraday cage that acts as a shield against electromagnetic radiation. The number and placement of the conductive vias are adjustable and can be optimized based on the relative importance of maximizing the quality factor Q of the inductor or minimizing the capacitance between the inductor and ground.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: December 3, 2002
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Robert A. Groves, Michael B. Rice, Anthony K. Stamper
  • Publication number: 20020149064
    Abstract: Polysilicon electrical depletion in a polysilicon gate electrode is reduced by depositing the polysilicon under controlled conditions so as to vary the crystal grain size through the thickness of the polysilicon. The resulting structure may have two or more depth-wise contiguous regions of respective crystalline grain size, and the selection of grain size is directed to maximize dopant activation in the polysilicon near the gate dielectric, and to tailor the resistance of the polysilicon above that first region and more distant from the gate dielectric. This method, and the resulting structure, are advantageously employed in forming FETs, and doped polysilicon resistors.
    Type: Application
    Filed: March 10, 2001
    Publication date: October 17, 2002
    Inventors: Arne W. Ballantine, Kevin K. Chan, Jeffrey D. Gilbert, Kevin M. Houlihan, Glenn L. Miles, James J. Quinlivan, Samuel C. Ramac, Michael B. Rice, Beth A. Ward
  • Publication number: 20020094681
    Abstract: A method and apparatus are provided for controlling a CVD process used to deposit films on semiconductor substrates wherein the by-products of the reaction are measured and monitored during the reaction preferably using mass spectrometry and the results used to calculate the concentrations of the by-products and to control the CVD reaction process based on the by-product concentrations. An exemplary CVD process is the deposition of tungsten metal on a semiconductor wafer. A preferred method and apparatus uses a capillary gas sampling device for removing the by-product gases of the reaction as a feed for the mass spectrometer. The capillary gas sampling device is preferably connected to a differential pump.
    Type: Application
    Filed: January 16, 2001
    Publication date: July 18, 2002
    Inventors: Douglas S. Armbrust, John M. Baker, Arne W. Ballantine, Roger W. Cheek, Doreen D. DiMilia, Mark L. Reath, Michael B. Rice
  • Publication number: 20020093029
    Abstract: A method and structure that provides a battery within an integrated circuit for providing voltage to low-current electronic devices that exist within the integrated circuit. The method includes Front-End-Of-Line (FEOL) processing for generating a layer of electronic devices on a semiconductor wafer, followed by Back-End-Of-Line (BEOL) integration for wires the electronic devices together to form completed electrical circuits of the integrated circuit. The BEOL integration includes forming a multilayered structure of wiring levels on the layer of electronic devices. Each wiring level includes conductive metallization (e.g., metal-plated vias, conductive wiring lines, etc.) embedded in insulative material. The battery is formed during BEOL integration within one or more wiring levels, and the conductive metallization conductively couples positive and negative terminals of the battery to the electronic devices.
    Type: Application
    Filed: January 16, 2001
    Publication date: July 18, 2002
    Inventors: Arne W. Ballantine, Robert A. Groves, Jennifer L. Lund, James S. Nakos, Michael B. Rice, Anthony K. Stamper
  • Publication number: 20020084509
    Abstract: An integrated semiconducting device comprises a semiconducting substrate, a plurality of grounding strips disposed above the substrate in a lower metal level of the semiconducting device, an inductor positioned in an upper metal level of the semiconducting device, and a plurality of conducting vias connected to and extending away from the grounding strips towards the inductor. The inductor, conducting via, ground strips structure forms a Faraday cage that acts as a shield against electromagnetic radiation. The number and placement of the conductive vias are adjustable and can be optimized based on the relative importance of maximizing the quality factor Q of the inductor or minimizing the capacitance between the inductor and ground.
    Type: Application
    Filed: January 2, 2001
    Publication date: July 4, 2002
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Arne W. Ballantine, Robert A. Groves, Michael B. Rice, Anthony K. Stamper
  • Patent number: 6255200
    Abstract: A process for depositing polycrystalline silicon, including exposing a semiconductor substrate on which the polycrystalline silicon is to be deposited to a silicon containing gas and a temperature of about 680° C. to about 800° C.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: July 3, 2001
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Kevin K. Chan, Gary L. Langdeau, Michael B. Rice