Patents by Inventor Michael B. Rosenberg

Michael B. Rosenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10895688
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 19, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Publication number: 20200329559
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Patent number: 10788633
    Abstract: In example implementations, an apparatus is provided. The apparatus includes an optical transmission component and an optical reception component. The optical transmission component includes a plurality of lasers and a transmit filter. The plurality of lasers each emit a different wavelength of light. The transmit filter includes a plurality of different regions that correspond to one of the different wavelengths of light emitted by the plurality of lasers. The optical reception component includes a plurality of photodiodes and a complementary reverse order (CRO) filter. The CRO filter includes a same plurality of different regions as the transmit filter in a reverse order.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: September 29, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Wayne Victor Sorin, Michael Renne Ty Tan, Georgios Panotopoulos
  • Publication number: 20200283935
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Kyle L. Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 10701802
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Publication number: 20200088947
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Publication number: 20200084886
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Patent number: 10514508
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: December 24, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Patent number: 10485103
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: November 19, 2019
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Publication number: 20190331858
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Application
    Filed: April 30, 2018
    Publication date: October 31, 2019
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Publication number: 20190331867
    Abstract: In example implementations, an apparatus is provided. The apparatus includes an optical transmission component and an optical reception component. The optical transmission component includes a plurality of lasers and a transmit filter. The plurality of lasers each emit a different wavelength of light. The transmit filter includes a plurality of different regions that correspond to one of the different wavelengths of light emitted by the plurality of lasers. The optical reception component includes a plurality of photodiodes and a complementary reverse order (CRO) filter. The CRO filter includes a same plurality of different regions as the transmit filter in a reverse order.
    Type: Application
    Filed: April 30, 2018
    Publication date: October 31, 2019
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Wayne Victor Sorin, Michael Renne Ty Tan, Georgios Panotopoulos
  • Patent number: 5762926
    Abstract: Methods of genetically modifying donor cells by gene transfer for grafting into the central nervous system to treat defective, diseased or damaged cells are disclosed. The modified donor cells produce functional molecules that effect the recovery or improved function of cells in the CNS. Methods and vectors for carrying out gene transfer and grafting are described.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: June 9, 1998
    Assignee: The Regents of the University of California
    Inventors: Fred H. Gage, Malcolm Schinstine, Jasodhara Ray, Theodore Friedmann, Michael D. Kawaja, Michael B. Rosenberg, Jon A. Wolff
  • Patent number: 5650148
    Abstract: Methods of genetically modifying donor cells by gene transfer for grafting into the central nervous system to treat defective, diseased or damaged cells are disclosed. The modified donor cells produce functional molecules that effect the recovery or improved function of cells in the CNS. Methods and vectors for carrying out gene transfer and grafting are described.
    Type: Grant
    Filed: March 10, 1994
    Date of Patent: July 22, 1997
    Assignee: The Regents of the University of California
    Inventors: Fred H. Gage, Theodore Friedmann, Michael B. Rosenberg, Jon A. Wolff, Malcolm Schinstine, Michael D. Kawaja, Jasodhara Ray
  • Patent number: 5082670
    Type: Grant
    Filed: December 15, 1988
    Date of Patent: January 21, 1992
    Assignee: The Regents of the University of California
    Inventors: Fred H. Gage, Michael B. Rosenberg, Theodore Friedmann
  • Patent number: 4948590
    Abstract: A liposome conjugated with a streptavidin compound, wherein carboxyl residues of the streptavidin are coupled to phospholipid amino groups of the liposome. The resultant streptavidin-conjugated liposome can be used to encapsulate drugs and cytotoxic agents for site-specific in vivo or ex corpra targeting.
    Type: Grant
    Filed: June 9, 1987
    Date of Patent: August 14, 1990
    Assignee: Yale University
    Inventors: Edward Hawrot, Michael B. Rosenberg, Xandra O. Breakefield