Patents by Inventor Michael B. Vincent

Michael B. Vincent has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963291
    Abstract: A packaging assembly and methodology provide a PCB substrate with one or more waveguide apertures and a conductive pattern which includes a plurality of landing pads that are disposed around peripheral edges of each waveguide aperture and that are connected to one another by trace lines so that, upon attachment and reflow of solder balls to the plurality of landing pads, the solder balls reflow along the trace lines to form a fully closed solder waveguide shielding wall disposed around peripheral edges of the first waveguide aperture.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: April 16, 2024
    Assignee: NXP B.V.
    Inventors: Leo van Gemert, Michael B. Vincent
  • Patent number: 11961776
    Abstract: A method of forming a semiconductor device is provided. The method includes providing a connector structure configured for carrying a signal and providing a semiconductor die. At least a portion of the connector structure and the semiconductor die are encapsulated with an encapsulant. The semiconductor die is interconnected with the connector structure by way of a conductive trace.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: April 16, 2024
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Scott M. Hayes
  • Publication number: 20240105660
    Abstract: A method of forming a semiconductor device is provided. The method includes forming a conductive die connector having a first end connected to a die pad of a semiconductor die. A first encapsulant formulated for selective activation by way of a laser encapsulates at least a portion of the semiconductor die. A first conductive trace of a redistribution layer is formed by plating a conductive material on a first laser activated path on a first major surface of the first encapsulant. The first conductive trace is directly connected to a second end of the die connector. A second encapsulant formulated for selective activation by way of a laser encapsulates at least the first conductive trace and exposed portions of the first major surface of the first encapsulant.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 28, 2024
    Inventors: Michael B. Vincent, Scott M. Hayes
  • Patent number: 11935809
    Abstract: A cost-effective process and structure is provided for a thermal dissipation element for semiconductor device packages incorporating antennas that can incorporate RF/EMI shielding from the antenna elements. Certain embodiments provide incorporated antenna element structures as part of the same process. These features are provided using a selectively-plated thermal dissipation structure that is formed to provide shielding around semiconductor device dies that are part of the package. In some embodiments, the thermal dissipation structure is molded to the semiconductor device, thereby permitting a thermally efficient close coupling between a device die requiring thermal dissipation and the dissipation structure itself.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: March 19, 2024
    Assignee: NXP USA, INC.
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Betty Hill-Shan Yeung, Rushik P. Tank, Kabir Mirpuri
  • Publication number: 20240088068
    Abstract: A method of forming a semiconductor device is provided. The method includes encapsulating with an encapsulant at least a portion of a semiconductor die and a package substrate, the encapsulant including an additive selectively activated by way of a laser. A first opening is formed in the encapsulant, the first opening exposing a predetermined first portion of the package substrate. The additive is activated at the sidewalls of the first opening. A second opening is formed in the encapsulant, the second opening encircling the first opening and exposing a predetermined second portion of the package substrate. The additive is activated at the sidewalls the second opening. A conductive material is plated on the additive activated portions of the encapsulant.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 14, 2024
    Inventors: Michael B. Vincent, Scott M. Hayes, Zhiwei Gong, Leo van Gemert, Antonius Hendrikus Jozef Kamphuis, Wen Hung Huang
  • Publication number: 20240055415
    Abstract: A semiconductor device package may include a package substrate, mold material formed over the package substrate, and a mold-embedded inductor that is embedded in the mold material. The mold-embedded inductor may be coupled to a die, such as a power management integrated circuit die, which may also be embedded in the mold material. The mold-embedded inductor may be formed by forming conductive traces and an inductor core in the mold material. For example, an active mold packaging (AMP) process and corresponding laser direct structuring (LDS) processes may be performed to form openings in the mold material and to activate surfaces of the mold material to facilitate subsequent plating of conductive material. Activated surfaces of the mold material may have micro-rough texture and may include bulk conductive material formed via the application of laser energy to additives in the mold material during the LDS process(es).
    Type: Application
    Filed: August 10, 2022
    Publication date: February 15, 2024
    Inventors: Michael B. Vincent, Varughese Mathew
  • Patent number: 11876059
    Abstract: A semiconductor device having a radiating element and a directing structure is provided. The semiconductor device includes a device package. A semiconductor die is coupled to the radiating element integrated in the device package. The directing structure is affixed to the device package by way of an adhesive. The directing structure is located over the radiating element and configured for propagation of radio frequency (RF) signals.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: January 16, 2024
    Assignee: NXP USA, INC.
    Inventors: Robert Joseph Wenzel, Michael B. Vincent
  • Publication number: 20230402408
    Abstract: A method of forming a semiconductor device is provided. The method includes placing a semiconductor die and an RF sub-assembly on a carrier substrate. The RF sub-assembly includes a sacrificial blank, a conductive radiant element, and a conductive shield. At least a portion of the semiconductor die and the RF sub-assembly is encapsulated with an encapsulant. The carrier substrate is separated from the encapsulated semiconductor die and RF sub-assembly to expose a side of the sacrificial blank. The sacrificial blank is removed to form a cavity in the RF sub-assembly such that the conductive radiant element and the conductive shield are exposed through the cavity. A package lid is affixed on the encapsulated semiconductor die and RF sub-assembly and configured to serve as a signal reflector for propagation of an RF signal.
    Type: Application
    Filed: June 8, 2022
    Publication date: December 14, 2023
    Inventors: Michael B. Vincent, Scott M. Hayes
  • Patent number: 11837560
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes forming an assembly including placing a semiconductor die and a launcher structure on a carrier substrate, encapsulating at least a portion of the semiconductor die and the launcher structure, and applying a redistribution layer on a surface of the semiconductor die and a surface of the launcher structure to connect a bond pad of the semiconductor die with an antenna launcher of the launcher structure. The assembly is attached to a substrate and a waveguide overlapping the assembly is attached to the substrate. The waveguide structure is physically decoupled from the assembly.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: December 5, 2023
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Giorgio Carluccio, Maristella Spella, Scott M. Hayes
  • Patent number: 11823968
    Abstract: A semiconductor device package having stress isolation is provided. The semiconductor device package includes a package substrate and a sensor attached to the package substrate. A first isolation material is formed around a perimeter of the sensor. An encapsulant encapsulates at least a portion of the first isolation material and the package substrate.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: November 21, 2023
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Scott M. Hayes, Stephen Ryan Hooper
  • Publication number: 20230369248
    Abstract: A method of manufacturing a semiconductor device packaging panel is provided. The method includes forming a panel having an active side and a backside. The panel includes a plurality of semiconductor die encapsulated with an encapsulant. An active surface of the semiconductor die is exposed on the active side of the panel. A warpage control carrier is attached onto the backside of the panel. The warpage control carrier includes an electroactive element configured for substantially flattening the panel while a control voltage is applied to the electroactive element.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Scott M. Hayes, Michael B. Vincent, Zhiwei Gong, Richard Te Gan, Vivek Gupta
  • Patent number: 11817366
    Abstract: A semiconductor device package having a thermal dissipation feature is provided. The semiconductor device package includes a package substrate. A semiconductor die is mounted on a first surface of the package substrate. A first conductive connector is affixed to a first connector pad of the package substrate. A conformal thermal conductive layer is applied on the semiconductor die and a portion of the first surface of the package substrate. The conformal thermal conductive layer is configured and arranged as a thermal conduction path between the semiconductor die and the first conductive connector.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: November 14, 2023
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Scott M. Hayes, Zhiwei Gong, Kabir Mirpuri, Rushik P. Tank, Betty Hill-Shan Yeung
  • Publication number: 20230345623
    Abstract: A packaging assembly and methodology provide a PCB substrate with one or more waveguide apertures and a conductive pattern which includes a plurality of landing pads that are disposed around peripheral edges of each waveguide aperture and that are connected to one another by trace lines so that, upon attachment and reflow of solder balls to the plurality of landing pads, the solder balls reflow along the trace lines to form a fully closed solder waveguide shielding wall disposed around peripheral edges of the first waveguide aperture.
    Type: Application
    Filed: April 21, 2022
    Publication date: October 26, 2023
    Applicant: NXP B.V.
    Inventors: Leo van Gemert, Michael B. Vincent
  • Patent number: 11791283
    Abstract: A method of manufacturing a semiconductor device packaging panel is provided. The method includes forming a panel having an active side and a backside. The panel includes a plurality of semiconductor die encapsulated with an encapsulant. An active surface of the semiconductor die is exposed on the active side of the panel. A warpage control carrier is attached onto the backside of the panel. The warpage control carrier includes an electroactive element configured for substantially flattening the panel while a control voltage is applied to the electroactive element.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: October 17, 2023
    Assignee: NXP USA, INC.
    Inventors: Scott M. Hayes, Michael B. Vincent, Zhiwei Gong, Richard Te Gan, Vivek Gupta
  • Patent number: 11777204
    Abstract: A package includes an integrated circuit, IC, die having circuitry configured to generate signalling for transmission to a waveguide and/or receive signalling from a waveguide via a launcher. The die is coupled to an interconnect layer extending out from a footprint of the die. The launcher is formed in a launcher-substrate, separate from the die. The launcher is coupled to the die to pass the signalling therebetween by a connection in the interconnect layer. The launcher includes a launcher element mounted in a first plane within the launcher-substrate and a waveguide-cavity including a ground plane arranged opposed to and spaced from the first plane. The waveguide-cavity is further defined by at least one side wall extending from the ground plane towards the first plane. The die and launcher are at least partially surrounded by mould material of the package.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: October 3, 2023
    Assignee: NXP B.V.
    Inventors: Giorgio Carluccio, Michael B. Vincent, Maristella Spella, Antonius Johannes Matheus de Graauw, Harshitha Thippur Shivamurthy
  • Publication number: 20230307403
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes providing a semiconductor die at least partially encapsulated with an encapsulant. A first non-conductive layer is deposited over an active side of the semiconductor die and a surface of the encapsulant. A first opening is formed in the first non-conductive layer exposing a portion of a bond pad of the semiconductor die. A conductive interconnect trace is formed over a portion of the first non-conductive layer and the exposed portion of the bond pad. A second non-conductive layer is formed over the conductive interconnect trace and exposed portions of first non-conductive layer with a second opening formed in the second non-conductive layer exposing a portion of the conductive interconnect trace. A laser ablated structure is formed at a surface of the second non-conductive layer proximate to a perimeter of the second opening.
    Type: Application
    Filed: March 22, 2022
    Publication date: September 28, 2023
    Inventor: Michael B. Vincent
  • Patent number: 11760623
    Abstract: A no-gel sensor package is disclosed. In one embodiment, the package includes a microelectromechanical system (MEMS) die having a first substrate, which in turn includes a first surface on which is formed a MEMS device. The package also includes a polymer ring with an inner wall extending between first and second oppositely facing surfaces. The first surface of the polymer ring is bonded to the first surface of the first substrate to define a first cavity in which the MEMS device is contained. A molded compound body having a second cavity that is concentric with the first cavity, enables fluid communication between the MEMS device and an environment external to the package.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: September 19, 2023
    Assignee: NXP USA, INC.
    Inventors: Stephen Ryan Hooper, Mark Edward Schlarmann, Michael B. Vincent, Scott M. Hayes, Julien Juéry
  • Patent number: 11749624
    Abstract: A semiconductor device and a method of making the same. The device includes an encapsulant. The device also includes a semiconductor die in the encapsulant. The device further includes electromagnetic radiation transmitting and receiving parts in the encapsulant. The device also includes an intermediate portion having a first surface and a second surface. The first surface is attached to the encapsulant. The device also includes an antenna portion attached to the second surface of the intermediate portion. The antenna portion includes one or more openings for conveying electromagnetic radiation. The intermediate portion includes one or more corresponding openings aligned with the openings of the antenna portion. Each opening of the antenna portion and each corresponding opening of the intermediate portion forms an electrically contiguous passage for conveying the electromagnetic radiation to the electromagnetic radiation transmitting and receiving parts in the encapsulant.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: September 5, 2023
    Assignee: NXP B.V.
    Inventors: Abdellatif Zanati, Michael B. Vincent
  • Publication number: 20230268304
    Abstract: A method of forming a semiconductor device is provided. The method includes placing a semiconductor die on a carrier substrate and placing a sacrificial blank on the carrier substrate with a routing structure attached to the sacrificial blank. At least a portion of the semiconductor die, sacrificial blank, and routing structure are encapsulated with an encapsulant. The carrier substrate is separated from a first side of the encapsulated semiconductor die, sacrificial blank, and routing structure to expose a surface of the sacrificial blank. The sacrificial blank is etched to form a cavity in the encapsulant and expose a portion of the routing structure exposed through the cavity.
    Type: Application
    Filed: February 23, 2022
    Publication date: August 24, 2023
    Inventors: Michael B. Vincent, Scott M. Hayes
  • Patent number: 11728285
    Abstract: A method of manufacturing a carrier for semiconductor device packaging is provided. The method includes forming a carrier having a plurality of plateau regions separated by a plurality of channels. The carrier is configured and arranged to support a plurality of semiconductor die during a packaging operation. The plurality of channels is filled with a material configured to control warpage of the carrier.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: August 15, 2023
    Assignee: NXP USA, INC.
    Inventors: Vivek Gupta, Michael B. Vincent, Scott M. Hayes, Richard Te Gan, Zhiwei Gong