Patents by Inventor Michael B. Wakin

Michael B. Wakin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8848091
    Abstract: A new digital image/video camera that directly acquires random projections of the incident light field without first collecting the pixels/voxels. In one preferred embodiment, the camera employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom binary patterns. Its hallmarks include the ability to obtain an image with only a single detection element while measuring the image/video fewer times than the number of pixels or voxels—this can significantly reduce the computation required for image/video acquisition/encoding. Since the system features a single photon detector, it can also be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS imagers.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: September 30, 2014
    Assignee: William Marsh Rice University
    Inventors: Richard g. Baraniuk, Dror Z. Baron, Marco F. Duarte, Kevin F. Kelly, Courtney C. Lane, Jason N. Laska, Dharmpal Takhar, Michael B. Wakin
  • Patent number: 8687689
    Abstract: A typical data acquisition system takes periodic samples of a signal, image, or other data, often at the so-called Nyquist/Shannon sampling rate of two times the data bandwidth in order to ensure that no information is lost. In applications involving wideband signals, the Nyquist/Shannon sampling rate is very high, even though the signals may have a simple underlying structure. Recent developments in mathematics and signal processing have uncovered a solution to this Nyquist/Shannon sampling rate bottlenck for signals that are sparse or compressible in some representation. We demonstrate and reduce to practice methods to extract information directly from an analog or digital signal based on altering our notion of sampling to replace uniform time samples with more general linear functionals. One embodiment of our invention is a low-rate analog-to-information converter that can replace the high-rate analog-to-digital converter in certain applications involving wideband signals.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: April 1, 2014
    Assignee: William Marsh Rice University
    Inventors: Richard Baraniuk, Dror Z. Baron, Marco F. Duarte, Mohamed Elnozahi, Michael B. Wakin, Mark A. Davenport, Jason N. Laska, Joel A. Tropp, Yehia Massoud, Sami Kirolos, Tamer Ragheb
  • Patent number: 8483492
    Abstract: The recently introduced theory of Compressive Sensing (CS) enables a new method for signal recovery from incomplete information (a reduced set of “compressive” linear measurements), based on the assumption that the signal is sparse in some dictionary. Such compressive measurement schemes are desirable in practice for reducing the costs of signal acquisition, storage, and processing. However, the current CS framework considers only a certain task (signal recovery) and only in a certain model setting (sparsity). We show that compressive measurements are in fact information scalable, allowing one to answer a broad spectrum of questions about a signal when provided only with a reduced set of compressive measurements. These questions range from complete signal recovery at one extreme down to a simple binary detection decision at the other. (Questions in between include, for example, estimation and classification.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: July 9, 2013
    Assignee: William Marsh Rice University
    Inventors: Richard Baraniuk, Marco F. Duarte, Mark A. Davenport, Michael B. Wakin
  • Publication number: 20120213270
    Abstract: A new digital image/video camera that directly acquires random projections of the incident light field without first collecting the pixels/voxels. In one preferred embodiment, the camera employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom binary patterns. Its hallmarks include the ability to obtain an image with only a single detection element while measuring the image/video fewer times than the number of pixels or voxels—this can significantly reduce the computation required for image/video acquisition/encoding. Since the system features a single photon detector, it can also be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS imagers.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 23, 2012
    Inventors: Richard G. Baraniuk, Dror Z. Baron, Marco F. Duarte, Kevin F. Kelly, Courtney C. Lane, Jason N. Laska, Dharmpal Takhar, Michael B. Wakin
  • Patent number: 8199244
    Abstract: A new digital image/video camera that directly acquires random projections of the incident light field without first collecting the pixels/voxels. In one preferred embodiment, the camera employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom binary patterns. Its hallmarks include the ability to obtain an image with only a single detection element while measuring the image/video fewer times than the number of pixels or voxels—this can significantly reduce the computation required for image/video acquisition/encoding. Since the system features a single photon detector, it can also be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS imagers.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: June 12, 2012
    Assignee: William Marsh Rice University
    Inventors: Richard G. Baraniuk, Dror Z. Baron, Marco F. Duarte, Kevin F. Kelly, Courtney C. Lane, Jason N. Laska, Dharmpal Takhar, Michael B. Wakin
  • Publication number: 20110025870
    Abstract: A new digital image/video camera that directly acquires random projections of the incident light field without first collecting the pixels/voxels. In one preferred embodiment, the camera employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom binary patterns. Its hallmarks include the ability to obtain an image with only a single detection element while measuring the image/video fewer times than the number of pixels or voxels—this can significantly reduce the computation required for image/video acquisition/encoding. Since the system features a single photon detector, it can also be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS imagers.
    Type: Application
    Filed: June 1, 2010
    Publication date: February 3, 2011
    Inventors: Richard G. Baraniuk, Dror Z. Baron, Marco F. Duarte, Kevin F. Kelly, Courtney C. Lane, Jason N. Laska, Dharmpal Takhar, Michael B. Wakin
  • Publication number: 20090222226
    Abstract: A typical data acquisition system takes periodic samples of a signal, image, or other data, often at the so-called Nyquist/Shannon sampling rate of two times the data bandwidth in order to ensure that no information is lost. In applications involving wideband signals, the Nyquist/Shannon sampling rate is very high, even though the signals may have a simple underlying structure. Recent developments in mathematics and signal processing have uncovered a solution to this Nyquist/Shannon sampling rate bottlenck for signals that are sparse or compressible in some representation. We demonstrate and reduce to practice methods to extract information directly from an analog or digital signal based on altering our notion of sampling to replace uniform time samples with more general linear functionals. One embodiment of our invention is a low-rate analog-to-information converter that can replace the high-rate analog-to-digital converter in certain applications involving wideband signals.
    Type: Application
    Filed: October 25, 2006
    Publication date: September 3, 2009
    Inventors: Richard G. Baraniuk, Dror Z. Baron, Marco F. Duarte, Mohamed Elnozahi, Michael B. Wakin, Mark A. Davenport, Jason N. Laska, Joel A. Tropp, Yehia Massoud, Sami Kirolos, Tamer Ragheb
  • Patent number: 7511643
    Abstract: A method for approximating a plurality of digital signals or images using compressed sensing. In a scheme where a common component xc of said plurality of digital signals or images an innovative component xi of each of said plurality of digital signals each are represented as a vector with m entries, the method comprises the steps of making a measurement yc, where yc comprises a vector with only ni entries, where ni is less than m, making a measurement yi for each of said correlated digital signals, where yi comprises a vector with only ni entries, where ni is less than m, and from each said innovation components yi, producing an approximate reconstruction of each m-vector xi using said common component yc and said innovative component yi.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: March 31, 2009
    Assignee: William Marsh Rice University
    Inventors: Richard G. Baraniuk, Dror Z. Baron, Marco F. Duarte, Shriram Sarvotham, Michael B. Wakin, Mark Davenport
  • Publication number: 20080228446
    Abstract: The recently introduced theory of Compressive Sensing (CS) enables a new method for signal recovery from incomplete information (a reduced set of “compressive” linear measurements), based on the assumption that the signal is sparse in some dictionary. Such compressive measurement schemes are desirable in practice for reducing the costs of signal acquisition, storage, and processing. However, the current CS framework considers only a certain task (signal recovery) and only in a certain model setting (sparsity). We show that compressive measurements are in fact information scalable, allowing one to answer a broad spectrum of questions about a signal when provided only with a reduced set of compressive measurements. These questions range from complete signal recovery at one extreme down to a simple binary detection decision at the other. (Questions in between include, for example, estimation and classification.
    Type: Application
    Filed: October 25, 2006
    Publication date: September 18, 2008
    Inventors: Richard G Baraniuk, Marco F. Duarte, Mark A. Davenport, Michael B. Wakin
  • Publication number: 20080129560
    Abstract: A method for approximating a plurality of digital signals or images using compressed sensing. In a scheme where a common component xc of said plurality of digital signals or images an innovative component xi of each of said plurality of digital signals each are represented as a vector with m entries, the method comprises the steps of making a measurement yc, where yc comprises a vector with only ni entries, where ni is less than m, making a measurement yi for each of said correlated digital signals, where yi comprises a vector with only ni entries, where ni is less than m, and from each said innovation components yi, producing an approximate reconstruction of each m-vector xi using said common component yc and said innovative component yi.
    Type: Application
    Filed: August 8, 2007
    Publication date: June 5, 2008
    Inventors: Richard G. Baraniuk, Dror Z. Baron, Marco F. Duarte, Shriram Sarvotham, Michael B. Wakin, Mark Davenport
  • Patent number: 7271747
    Abstract: A method for approximating a plurality of digital signals or images using compressed sensing. In a scheme where a common component xc of said plurality of digital signals or images an innovative component xi of each of said plurality of digital signals each are represented as a vector with m entries, the method comprises the steps of making a measurement yc, where yc comprises a vector with only ni entries, where ni is less than m, making a measurement yi for each of said correlated digital signals, where yi comprises a vector with only ni entries, where ni is less than m, and from each said innovation components yi, producing an approximate reconstruction of each m-vector xi using said common component yc and said innovative component yi.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: September 18, 2007
    Assignee: Rice University
    Inventors: Richard G. Baraniuk, Dror Z. Baron, Marco F. Duarte, Shriram Sarvotham, Michael B. Wakin, Mark Davenport