Patents by Inventor Michael Bergt

Michael Bergt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951043
    Abstract: A system for processing a portion in a processing volume of a transparent material by application of focused radiation including a device for generating and an optical system for focusing radiation, with a device for changing the position of the focus of the radiation and a control device. The system includes a controller that controls the ophthalmologic therapy system. The controller is encoded with a scan pattern. The scan pattern includes adjacent strokes with each adjacent stroke having an angle of inclination (?) to the beam axis; and the angle of inclination (?) of the strokes to the beam axis is always larger than or equal to the focal angle (?) of the focused radiation.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: April 9, 2024
    Assignee: Carl Zeiss Meditec AG
    Inventors: Michael Bergt, Thomas Hamann, Robert Pomraenke
  • Publication number: 20230000672
    Abstract: A device for producing control data for a laser device for the surgical correction of defective vision. The device produces the control data such that the laser emits the laser radiation such that a volume in the cornea is isolated. The device calculates a radius of curvature RCV* to determine the control data, the cornea reduced by the volume having the radius of curvature RCV* and the radius of curvature being site-specific and satisfying the following equation: RCV*(r,?)=1/((1/RCV(r,?))+BCOR(r,?)/(nc?1))+F, wherein RCV(r,?) is the local radius of curvature of the cornea before the volume is removed, nc is the refractive index of the material of the cornea, F is a coefficient, and BCOR(r,?) is the local change in refractive force required for the desired correction of defective vision in a plane lying in the vertex of the cornea, and at least two radii r1 and r2 satisfy the equation BCOR(r=r1,?)?BCOR(r=r2,?).
    Type: Application
    Filed: July 8, 2022
    Publication date: January 5, 2023
    Inventors: Gregor STOBRAWA, Mark BISCHOFF, Michael BERGT
  • Patent number: 11413189
    Abstract: A device for producing control data for a laser device for the surgical correction of defective vision. The device produces the control data such that the laser emits the laser radiation such that a volume in the cornea is isolated. The device calculates a radius of curvature RCV* to determine the control data, the cornea reduced by the volume having the radius of curvature RCV* and the radius of curvature being site-specific and satisfying the following equation: RCV*(r,?)=1/((1/RCV(r,?))+BCOR(r,?)/(nc-1))+F, wherein RCV(r,?) is the local radius of curvature of the cornea before the volume is removed, nc is the refractive index of the material of the cornea, F is a coefficient, and BCOR(r,?) is the local change in refractive force required for the desired correction of defective vision in a plane lying in the vertex of the cornea, and at least two radii r1 and r2 satisfy the equation BCOR(r=r1,?)?BCOR(r=r2,?).
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: August 16, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Gregor Stobrawa, Mark Bischoff, Michael Bergt
  • Publication number: 20220183886
    Abstract: A system for processing a portion in a processing volume of a transparent material by application of focused radiation including a device for generating and an optical system for focusing radiation, with a device for changing the position of the focus of the radiation and a control device. The system includes a controller that controls the ophthalmologic therapy system. The controller is encoded with a scan pattern. The scan pattern includes adjacent strokes with each adjacent stroke having an angle of inclination (?) to the beam axis; and the angle of inclination (?) of the strokes to the beam axis is always larger than or equal to the focal angle (?) of the focused radiation.
    Type: Application
    Filed: January 20, 2022
    Publication date: June 16, 2022
    Inventors: Michael BERGT, Thomas HAMANN, Robert POMRAENKE
  • Publication number: 20220047419
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Application
    Filed: August 26, 2021
    Publication date: February 17, 2022
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 11229551
    Abstract: A system for processing a portion in a processing volume of a transparent material by application of focused radiation including a device for generating and an optical system for focusing radiation, with a device for changing the position of the focus of the radiation and a control device. This system performs a slow scanning movement of the focus and an independent fast scanning movement of the focus which section can be moved by the slow scanning movement in the entire processing volume in an arbitrary direction; as well as by a system into which a scan pattern is encoded, with scanning movement including at least one lateral base component in the x- and/or y-direction, which is superimposed by components with synchronous change-of-direction-movements in the z-direction and in x-direction and/or y-direction. The invention also includes corresponding methods, a control program product and a planning unit.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: January 25, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Michael Bergt, Thomas Hamann, Robert Pomraenke
  • Patent number: 11103381
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: August 31, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 11076917
    Abstract: A method for generating control data to control a laser device for correcting defective vision. A cut surface is specified which is curved, has a vertex and an edge, and is to be created in the eye. One or more paths, along which a focus of the laser radiation is to be adjusted, are defined for the control data and are selected such that they lie on or near the cut surface. To select the paths, a reference plane, preferably perpendicular, with respect to a direction of incidence of the laser radiation is determined, and different displacement positions are determined for said reference plane from the vertex to the edge of the cut surface. Multiple axes or semi-axes are determined for each displacement position. Intersections of the axes are connected into closed curves which are concentric or form a spiral.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: August 3, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Mark Bischoff, Gregor Stobrawa, Michael Bergt
  • Patent number: 11071648
    Abstract: The invention relates to a method for forming curved cuts in a transparent material, in particular in the cornea, by the creation of optical perforations in said material using laser radiation that is focused in the material. The focal point is displaced three-dimensionally to form the cut by lining up the optical perforations. The focal point is displaced in a first spatial direction by a displaceable lens and said focal directions, in such a way that it follows the contours of the cut, which lie on a plane that is substantially perpendicular to the first spatial direction.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: July 27, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Dirk Muehlhoff, Mario Gerlach, Markus Sticker, Carsten Lang, Mark Bischoff, Michael Bergt
  • Publication number: 20200330278
    Abstract: A system for short pulse laser eye surgery and a short pulse laser system, in which a beam guidance device passes through a corresponding articulated arm, and through an applicator head and a microscope head of the system, which is movable in a three-dimensional volume both independently of one another as well as connected to each other. The system also includes an easy to use patient interface with a one-piece contact element, a computer program product for methods of the incision guidance and sequentially operating referencing methods with patient interfaces containing markings.
    Type: Application
    Filed: June 17, 2020
    Publication date: October 22, 2020
    Inventors: Michael Stefan Rill, Delbert Peter Andrews, Tobias Damm, Robert Pomraenke, Jens Ringling, Thomas Wollweber, Stephan Oestreich, Michael Bergt, Rupert Menapace, Ekkehard Fabian, Evangelos Papastathopoulos, Martin Kühner, Dietmar Steinmetz, Holger Heinz, Sascha Koch, Stephan Laqua, Thomas Nobis
  • Patent number: 10729586
    Abstract: A planning device for a scanning pattern of a closed structure in an eye, an ophthalmic laser treatment device and corresponding methods including a scanning pattern of a closed structure in a tissue of a patient's eye in a single-pass method for the control of an ophthalmic laser treatment device, in which a starting point of the macroscopic scanning pattern which contains the scanning pattern is arranged in a region in which the angle between a direction of progress of the macroscopic scanning pattern and a direction of a maximum offset caused by movements of the eye relative to the ophthalmic laser treatment device is minimal, or in a region of a minimum change in the macroscopic scanning pattern (n the z-direction per unit of time, or in a region in which a direction of progress of the macroscopic scanning pattern is parallel to a direction of maximum offset.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: August 4, 2020
    Assignee: Carl Zeiss Meditec AG
    Inventors: Jens Ringling, Delbert Peter Andrews, Alexander Nikolaev, Michael Bergt
  • Patent number: 10722399
    Abstract: A system for short pulse laser eye surgery and a short pulse laser system, in which a beam guidance device passes through a corresponding articulated arm, and through an applicator head and a microscope head of the system, which is movable in a three-dimensional volume both independently of one another as well as connected to each other. The system also includes, an easy-to-use patient interface with a one-piece contact element, a computer program product for methods of the incision guidance and sequentially operating referencing methods with patient interfaces containing markings.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: July 28, 2020
    Assignee: Carl Zeiss Meditec AG
    Inventors: Michael Stefan Rill, Delbert Peter Andrews, Tobias Damm, Robert Pomraenke, Jens Ringling, Thomas Wollweber, Stephan Oestreich, Michael Bergt, Rupert Menapace, Ekkehard Fabian, Evangelos Papastathopoulos, Martin Kühner, Dietmar Steinmetz, Holger Heinz, Sascha Koch, Stephan Laqua, Thomas Nobis
  • Patent number: 10675183
    Abstract: A method for creating cuts in a transparent material using optical radiation, the optical radiation being focused onto the material in a focal point and the focal point being shifted along a curve: A simple or double harmonic curve is used when seen at a right angle to a main direction of incidence of the radiation and preferably successively traveled curves do not lie on top of each other.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: June 9, 2020
    Assignee: Carl Zeiss Meditec AG
    Inventors: Steffen Kahra, Herrn Jürgen Kühnert, Michael Bergt
  • Publication number: 20200085616
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Application
    Filed: August 21, 2019
    Publication date: March 19, 2020
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 10390994
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: August 27, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Publication number: 20190247225
    Abstract: A device for producing control data for a laser device for the surgical correction of defective vision. The device produces the control data such that the laser emits the laser radiation such that a volume in the cornea is isolated. The device calculates a radius of curvature RCV* to determine the control data, the cornea reduced by the volume having the radius of curvature RCV* and the radius of curvature being site-specific and satisfying the following equation: RCV*(r,?)=1/((1/RCV(r,?))+BCOR(r,?)/(nc-1))+F, wherein RCV(r,?) is the local radius of curvature of the cornea before the volume is removed, nc is the refractive index of the material of the cornea, F is a coefficient, and BCOR(r,?) is the local change in refractive force required for the desired correction of defective vision in a plane lying in the vertex of the cornea, and at least two radii r1 and r2 satisfy the equation BCOR(r=r1,?)?BCOR(r=r2,?).
    Type: Application
    Filed: January 14, 2019
    Publication date: August 15, 2019
    Inventors: Gregor Stobrawa, Mark Bischoff, Michael Bergt
  • Publication number: 20190247226
    Abstract: The invention relates to a method for forming curved cuts in a transparent material, in particular in the cornea, by the creation of optical perforations in said material using laser radiation that is focused in the material. The focal point is displaced three-dimensionally to form the cut by lining up the optical perforations. The focal point is displaced in a first spatial direction by a displaceable lens and said focal directions, in such a way that it follows the contours of the cut, which lie on a plane that is substantially perpendicular to the first spatial direction.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 15, 2019
    Inventors: Dirk Muehlhoff, Mario Gerlach, Markus Sticker, Carsten Lang, Mark Bischoff, Michael Bergt
  • Publication number: 20190201097
    Abstract: A method for generating control data to control a laser device for correcting defective vision. A cut surface is specified which is curved, has a vertex and an edge, and is to be created in the eye. One or more paths, along which a focus of the laser radiation is to be adjusted, are defined for the control data and are selected such that they lie on or near the cut surface. To select the paths, a reference plane, preferably perpendicular, with respect to a direction of incidence of the laser radiation is determined, and different displacement positions are determined for said reference plane from the vertex to the edge of the cut surface. Multiple axes or semi-axes are determined for each displacement position. Intersections of the axes are connected into closed curves which are concentric or form a spiral.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 4, 2019
    Inventors: Mark Bischoff, Gregor Stobrawa, Michael Bergt
  • Publication number: 20190110922
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 18, 2019
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 10213339
    Abstract: The invention relates to a method for forming curved cuts in a transparent material, in particular in the cornea, by the creation of optical perforations in said material using laser radiation that is focused in the material. The focal point is displaced three-dimensionally to form the cut by lining up the optical perforations. The focal point is displaced in a first spatial direction by a displaceable lens and said focal directions in such a way that it follows the contours of the cut, which lie on a plane that is substantially perpendicular to the first spatial direction.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: February 26, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Dirk Muehlhoff, Mario Gerlach, Markus Sticker, Carsten Lang, Mark Bischoff, Michael Bergt