Patents by Inventor Michael Blaber

Michael Blaber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230265142
    Abstract: A synthetic foldable protein has a tertiary structure emulating the tertiary structure of a reference foldable protein. The reference foldable protein has a folding nucleus peptide sequence associated with folding the reference foldable protein. The synthetic foldable protein also has a peptide sequence including the folding nucleus peptide sequence and at least one repeat thereof.
    Type: Application
    Filed: September 13, 2022
    Publication date: August 24, 2023
    Inventors: Michael Blaber, Liam M. Longo
  • Patent number: 11479590
    Abstract: A method of making a synthetic foldable having a tertiary structure emulating the tertiary structure of a reference foldable protein is described. The method includes determining a folding nucleus peptide sequence associated with folding the reference foldable protein. The synthetic foldable protein is synthesized by including the determined folding nucleus peptide sequence and at least one repeat thereof in the peptide sequence of the synthetic foldable protein.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: October 25, 2022
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Michael Blaber, Liam M. Longo
  • Publication number: 20210087248
    Abstract: A modified FGF-1 polypeptide that has an increased binding affinity for heparin relative the wild-type human FGF-1's binding affinity for heparin is described. The modified FGF-1 polypeptide has at least 80% amino acid sequence identity to wild-type human FGF-1 having SEQ ID NO: 1. The serine at an amino acid position of the modified FGF-1 polypeptide corresponding to amino acid position 116 of SEQ ID NO: 1 is substituted by an amino acid that increases the modified FGF-1 polypeptide's binding affinity for heparin relative to the binding affinity of SEQ ID NO: 1 to heparin.
    Type: Application
    Filed: September 2, 2020
    Publication date: March 25, 2021
    Inventors: Michael Blaber, Xue Xia
  • Publication number: 20200040051
    Abstract: The present disclosure provides FGF1 mutant proteins having one or more mutations in the heparin binding domain. Such mutants may also have an N-terminal deletion, point mutation(s), or combinations thereof. In some examples, the mutant FGF1 proteins have reduced mitogenic activity. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. The disclosed FGF1 mutants can reduce blood glucose in a mammal, and in some examples are used to treat a metabolic disorder.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 6, 2020
    Applicants: Salk Institute for Biological Studies, The Florida State University Research Foundation, Incorporated
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Ruth T. Yu, Michael Blaber, Xue Xia
  • Publication number: 20180265558
    Abstract: A modified FGF-1 polypeptide that has an increased binding affinity for heparin relative the wild-type human FGF-1's binding affinity for heparin is described. The modified FGF-1 polypeptide has at least 80% amino acid sequence identity to wild-type human FGF-1 having SEQ ID NO: 1. The serine at an amino acid position of the modified FGF-1 polypeptide corresponding to amino acid position 116 of SEQ ID NO: 1 is substituted by an amino acid that increases the modified FGF-1 polypeptide's binding affinity for heparin relative to the binding affinity of SEQ ID NO: 1 to heparin.
    Type: Application
    Filed: December 2, 2015
    Publication date: September 20, 2018
    Inventors: Michael Blaber, Xue Xia
  • Publication number: 20180230192
    Abstract: Mutant fibroblast growth factor (FGF) proteins having a polypeptide sequence with a high sequence identity to proteins encoded by members of the Fgf-1 subfamily of genes from a mammalian species, such as human, and with a specific amino acid substitution of an alanine at a position corresponding to amino acid position 66 of human FGF-1 with a cysteine and/or a specific amino acid substitution of a phenylalanine at a position corresponding to amino acid position 132 of human FGF-1 with a tryptophan (based on the 140 amino acid numbering scheme of human FGF-1) are provided. Other amino acid mutations or substitutions may be combined. Polynucleotide sequences encoding the mutant FGF proteins and host cells containing such polynucleotide sequences are provided. Methods of administering a mutant FGF protein to an individual to treat an ischemic condition or disease or a wound or tissue injury are also provided.
    Type: Application
    Filed: April 10, 2018
    Publication date: August 16, 2018
    Inventors: Michael Blaber, Jihun Lee
  • Patent number: 10022426
    Abstract: Mutant fibroblast growth factor (FGF) proteins having a polypeptide sequence with a high sequence identity to proteins encoded by members of the Fgf-1 subfamily of genes from a mammalian species, such as human, and with a specific amino acid substitution of an alanine at a position corresponding to amino acid position 66 of human FGF-1 with a cysteine and/or a specific amino acid substitution of a phenylalanine at a position corresponding to amino acid position 132 of human FGF-1 with a tryptophan (based on the 140 amino acid numbering scheme of human FGF-1) are provided. Other amino acid mutations or substitutions may be combined. Polynucleotide sequences encoding the mutant FGF proteins and host cells containing such polynucleotide sequences are provided. Methods of administering a mutant FGF protein to an individual to treat an ischemic condition or disease or a wound or tissue injury are also provided.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: July 17, 2018
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Michael Blaber, Jihun Lee
  • Patent number: 10000540
    Abstract: Mutant fibroblast growth factor (FGF) proteins having a polypeptide sequence with a high sequence identity to proteins encoded by members of the Fgf-1 subfamily of genes from a mammalian species, such as human, and with a specific amino acid substitution of an alanine at a position corresponding to amino acid position 66 of human FGF-1 with a cysteine and/or a specific amino acid substitution of a phenylalanine at a position corresponding to amino acid position 132 of human FGF-1 with a tryptophan (based on the 140 amino acid numbering scheme of human FGF-1) are provided. Other amino acid mutations or substitutions may be combined. Polynucleotide sequences encoding the mutant FGF proteins and host cells containing such polynucleotide sequences are provided. Methods of administering a mutant FGF protein to an individual to treat an ischemic condition or disease or a wound or tissue injury are also provided.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: June 19, 2018
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Michael Blaber, Jihun Lee
  • Patent number: 9957310
    Abstract: Mutant fibroblast growth factor (FGF) proteins having a polypeptide sequence with a high sequence identity to proteins encoded by members of the Fgf-1 subfamily of genes from a mammalian species, such as human, and with a specific amino acid substitution of an alanine at a position corresponding to amino acid position 66 of human FGF-1 with a cysteine and/or a specific amino acid substitution of a phenylalanine at a position corresponding to amino acid position 132 of human FGF-1 with a tryptophan (based on the 140 amino acid numbering scheme of human FGF-1) are provided. Other amino acid mutations or substitutions may be combined. Polynucleotide sequences encoding the mutant FGF proteins and host cells containing such polynucleotide sequences are provided. Methods of administering a mutant FGF protein to an individual to treat an ischemic condition or disease or a wound or tissue injury are also provided.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: May 1, 2018
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Michael Blaber, Jihun Lee
  • Publication number: 20170362289
    Abstract: A method of making a synthetic foldable having a tertiary structure emulating the tertiary structure of a reference foldable protein is described. The method includes determining a folding nucleus peptide sequence associated with folding the reference foldable protein. The synthetic foldable protein is synthesized by including the determined folding nucleus peptide sequence and at least one repeat thereof in the peptide sequence of the synthetic foldable protein.
    Type: Application
    Filed: September 7, 2017
    Publication date: December 21, 2017
    Applicant: Florida State University Research Foundation, Inc.
    Inventors: Michael Blaber, Liam M. Longo
  • Publication number: 20170355739
    Abstract: The present disclosure provides FGF1 mutant proteins having one or more mutations in the heparin binding domain. Such mutants may also have an N-terminal deletion, point mutation(s), or combinations thereof. In some examples, the mutant FGF1 proteins have reduced mitogenic activity. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. The disclosed FGF1 mutants can reduce blood glucose in a mammal, and in some examples are used to treat a metabolic disorder.
    Type: Application
    Filed: August 21, 2017
    Publication date: December 14, 2017
    Applicants: Salk Institute for Biological Studies, The Florida State University Research Foundation, Incorporated
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Ruth T. Yu, Michael Blaber, Xue Xia
  • Patent number: 9840544
    Abstract: The present invention relates to a top-down symmetric deconstruction approach which provides a novel alternative means to successfully identify a useful polypeptide “building block” for subsequent “bottom-up” de novo design of target protein architecture. The present invention also pertains to a novel peptides isolated by top-down symmetric deconstruction which may be useful for design or directed evolution of novel proteins with novel functionalities.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: December 12, 2017
    Assignee: Florida State University Research Foundation
    Inventors: Michael Blaber, Jihun Lee
  • Patent number: 9783587
    Abstract: A method of making a synthetic foldable having a tertiary structure emulating the tertiary structure of a reference foldable protein is described. The method includes determining a folding nucleus peptide sequence associated with folding the reference foldable protein. The synthetic foldable protein is synthesized by including the determined folding nucleus peptide sequence and at least one repeat thereof in the peptide sequence of the synthetic foldable protein.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: October 10, 2017
    Assignee: Florida State University Research Foundation
    Inventors: Michael Blaber, Liam M. Longo
  • Patent number: 9717217
    Abstract: An animal restraining harness or jacket and a method of use thereof, for protecting the shoulder and upper abdomen when experimental/surgical procedures are performed and when the experimental/surgical sites must be protected from biting, scratching, and other unwanted contact. The jacket generally includes a shoulder region and collar extensions, where the shoulder region is connected to the collar extensions. The collar extensions are wrapped and secured around the collar or neck area of the animal, and the shoulder region is wrapped and secured around the shoulder and torso area of the animal. Preferably, the collar extensions and shoulder region are secured on the dorsal side of the animal, thus providing a dorsal gap therebetween. This harnesses the animal effectively and prevents escape from the restraining jacket.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: August 1, 2017
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Michael Blaber, Sachiko I. Blaber
  • Publication number: 20170096465
    Abstract: Mutant fibroblast growth factor (FGF) proteins having a polypeptide sequence with a high sequence identity to proteins encoded by members of the Fgf-1 subfamily of genes from a mammalian species, such as human, and with a specific amino acid substitution of an alanine at a position corresponding to amino acid position 66 of human FGF-1 with a cysteine and/or a specific amino acid substitution of a phenylalanine at a position corresponding to amino acid position 132 of human FGF-1 with a tryptophan (based on the 140 amino acid numbering scheme of human FGF-1) are provided. Other amino acid mutations or substitutions may be combined. Polynucleotide sequences encoding the mutant FGF proteins and host cells containing such polynucleotide sequences are provided. Methods of administering a mutant FGF protein to an individual to treat an ischemic condition or disease or a wound or tissue injury are also provided.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 6, 2017
    Inventors: Michael Blaber, Jihun LEE
  • Publication number: 20170096464
    Abstract: Mutant fibroblast growth factor (FGF) proteins having a polypeptide sequence with a high sequence identity to proteins encoded by members of the Fgf-1 subfamily of genes from a mammalian species, such as human, and with a specific amino acid substitution of an alanine at a position corresponding to amino acid position 66 of human FGF-1 with a cysteine and/or a specific amino acid substitution of a phenylalanine at a position corresponding to amino acid position 132 of human FGF-1 with a tryptophan (based on the 140 amino acid numbering scheme of human FGF-1) are provided. Other amino acid mutations or substitutions may be combined. Polynucleotide sequences encoding the mutant FGF proteins and host cells containing such polynucleotide sequences are provided. Methods of administering a mutant FGF protein to an individual to treat an ischemic condition or disease or a wound or tissue injury are also provided.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 6, 2017
    Inventors: Michael Blaber, Jihun LEE
  • Publication number: 20170095532
    Abstract: Mutant fibroblast growth factor (FGF) proteins having a polypeptide sequence with a high sequence identity to proteins encoded by members of the Fgf-1 subfamily of genes from a mammalian species, such as human, and with a specific amino acid substitution of an alanine at a position corresponding to amino acid position 66 of human FGF-1 with a cysteine and/or a specific amino acid substitution of a phenylalanine at a position corresponding to amino acid position 132 of human FGF-1 with a tryptophan (based on the 140 amino acid numbering scheme of human FGF-1) are provided. Other amino acid mutations or substitutions may be combined. Polynucleotide sequences encoding the mutant FGF proteins and host cells containing such polynucleotide sequences are provided. Methods of administering a mutant FGF protein to an individual to treat an ischemic condition or disease or a wound or tissue injury are also provided.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 6, 2017
    Inventors: Michael Blaber, Jihun LEE
  • Patent number: 9469680
    Abstract: Mutant fibroblast growth factor (FGF) proteins having a polypeptide sequence with a high sequence identity to proteins encoded by members of the Fgf-1 subfamily of genes from a mammalian species, such as human, and with a specific amino acid substitution of an alanine at a position corresponding to amino acid position 66 of human FGF-1 with a cysteine and/or a specific amino acid substitution of a phenylalanine at a position corresponding to amino acid position 132 of human FGF-1 with a tryptophan (based on the 140 amino acid numbering scheme of human FGF-1) are provided. Other amino acid mutations or substitutions may be combined. Polynucleotide sequences encoding the mutant FGF proteins and host cells containing such polynucleotide sequences are provided. Methods of administering a mutant FGF protein to an individual to treat an ischemic condition or disease or a wound or tissue injury are also provided.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: October 18, 2016
    Assignee: Florida State University Research Foundation
    Inventors: Michael Blaber, Jihun Lee
  • Publication number: 20150361149
    Abstract: The present invention relates to a top-down symmetric deconstruction approach which provides a novel alternative means to successfully identify a useful polypeptide “building block” for subsequent “bottom-up” de novo design of target protein architecture. The present invention also pertains to a novel peptides isolated by top-down symmetric deconstruction which may be useful for design or directed evolution of novel proteins with novel functionalities.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 17, 2015
    Inventors: MICHAEL BLABER, JIHUN LEE
  • Publication number: 20150148293
    Abstract: Mutant fibroblast growth factor (FGF) proteins having a polypeptide sequence with a high sequence identity to proteins encoded by members of the Fgf-1 subfamily of genes from a mammalian species, such as human, and with a specific amino acid substitution of an alanine at a position corresponding to amino acid position 66 of human FGF-1 with a cysteine and/or a specific amino acid substitution of a phenylalanine at a position corresponding to amino acid position 132 of human FGF-1 with a tryptophan (based on the 140 amino acid numbering scheme of human FGF-1) are provided. Other amino acid mutations or substitutions may be combined. Polynucleotide sequences encoding the mutant FGF proteins and host cells containing such polynucleotide sequences are provided. Methods of administering a mutant FGF protein to an individual to treat an ischemic condition or disease or a wound or tissue injury are also provided.
    Type: Application
    Filed: January 9, 2015
    Publication date: May 28, 2015
    Inventors: MICHAEL BLABER, JIHUN LEE