Patents by Inventor Michael Bobye

Michael Bobye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180292212
    Abstract: A system operating in a dead reckoning mode accumulates relative yaw measurements, i.e., measurements of rotation about a z-axis, made by one or more over mechanization update intervals and produces dead reckoning mechanization update values. The system accumulates the values over a turn rate accumulation period, calculates a yaw rate and determines if the yaw rate exceeds a turn rate threshold. If so, the system directs an INS filter to perform a zero yaw rate update at the start of a next mechanization update interval, to correct for the z-axis drift errors of the gyroscopes based on the sensed rotation in the relative yaw measurements over the previous mechanization update interval. The system then sets the z-axis drift errors to zero. If the system determines that the yaw rate exceeds the turn rate threshold, the zero yaw rate update is not performed at the start of the next mechanization update interval.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 11, 2018
    Inventor: Michael Bobye
  • Patent number: 9933263
    Abstract: A system and method for providing location information using a long baseline accelerometer/GNSS system. A first set of accelerometers is operatively associated with the first GNSS antenna while a second set of accelerometers is operatively associated with a second (or more) GNSS antenna. The multiple assemblies are separated by predefined distances and held rigid to each other. Accelerometer data is combined with the GNSS data to provide improved navigation and location information.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: April 3, 2018
    Assignee: NovAtel Inc.
    Inventors: Michael Bobye, Patrick Fenton
  • Publication number: 20170307378
    Abstract: A system and method for providing location information using a long baseline accelerometer/GNSS system. A first set of accelerometers is operatively associated with the first GNSS antenna while a second set of accelerometers is operatively associated with a second (or more) GNSS antenna. The multiple assemblies are separated by predefined distances and held rigid to each other. Accelerometer data is combined with the GNSS data to provide improved navigation and location information.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 26, 2017
    Inventors: Michael Bobye, Patrick Fenton
  • Patent number: 9791575
    Abstract: A GNSS/INS navigation system includes an INS filter that uses relative yaw values as an observable for attitude updates. The system calculates the relative yaw values based on carrier phase measurements, e.g., phase windup measurements, of GNSS signals received at a system GNSS antenna. The use of the relative yaw values as an observable in the INS filter allows the system to improve estimates of associated biases, and also to continue to estimate the associated biases in low dynamic environments.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: October 17, 2017
    Assignee: NovAtel Inc.
    Inventor: Michael Bobye
  • Publication number: 20170212248
    Abstract: A GNSS/INS navigation system includes an INS filter that uses relative yaw values as an observable for attitude updates. The system calculates the relative yaw values based on carrier phase measurements, e.g., phase windup measurements, of GNSS signals received at a system GNSS antenna. The use of the relative yaw values as an observable in the INS filter allows the system to improve estimates of associated biases, and also to continue to estimate the associated biases in low dynamic environments.
    Type: Application
    Filed: January 27, 2016
    Publication date: July 27, 2017
    Inventor: Michael Bobye
  • Patent number: 9182237
    Abstract: A navigation system for use with moving vehicles includes target points proximate to a rendezvous site located on a first moving vehicle. One or more transmitters broadcast target point positioning information. A navigation unit on a second moving vehicle utilizes a camera to capture images that include the target points or a detector system that emits one or more beams to the target points. The navigation unit determines the relative position and orientation of the rendezvous site at the second vehicle. The navigation unit utilizes the relative position and orientation and an absolute position and orientation of the rendezvous site calculated from the target position information and calculates an absolute position and orientation corresponding to the second vehicle. The navigation unit then initializes its component inertial subsystem using a local position and orientation that are based on the calculated absolute position and orientation of the second vehicle.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: November 10, 2015
    Assignee: NOVATEL INC.
    Inventors: Kristian Morin, Michael Bobye, Sandra Kennedy
  • Publication number: 20150268047
    Abstract: A navigation system for use with moving vehicles includes target points proximate to a rendezvous site located on a first moving vehicle. One or more transmitters broadcast target point positioning information. A navigation unit on a second moving vehicle utilizes a camera to capture images that include the target points or a detector system that emits one or more beams to the target points. The navigation unit determines the relative position and orientation of the rendezvous site at the second vehicle. The navigation unit utilizes the relative position and orientation and an absolute position and orientation of the rendezvous site calculated from the target position information and calculates an absolute position and orientation corresponding to the second vehicle. The navigation unit then initializes its component inertial subsystem using a local position and orientation that are based on the calculated absolute position and orientation of the second vehicle.
    Type: Application
    Filed: February 12, 2015
    Publication date: September 24, 2015
    Inventors: Kristian Morin, Michael Bobye, Sandra Kennedy
  • Patent number: 8996311
    Abstract: A navigation system for use with moving vehicles includes target points proximate to a rendezvous site located on a first moving vehicle. One or more transmitters associated with the target points broadcast time-tagged target point positioning information. A navigation unit on a second moving vehicle utilizes a camera with known properties to capture images that include the target points. The navigation unit processes the image that corresponds in time to the positioning information, to determine the relative position and orientation of the rendezvous site at the second vehicle. The navigation unit utilizes the relative position and orientation and an absolute position and orientation of the rendezvous site calculated from the target position information and calculates an absolute position and orientation corresponding to the second vehicle.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: March 31, 2015
    Assignee: NovAtel Inc.
    Inventors: Kristian Morin, Michael Bobye, Sandy Kennedy
  • Patent number: 7346452
    Abstract: An inertial (“INS”)/GPS receiver uses injected alignment data to determine the alignment of the INS sub-system when the receiver is in motion during start-up. The alignment data is determined from parameterized surface information, measured GPS velocity, and a known or predetermined angular relationship between the vehicle on which the receiver is mounted and an inertial measurement reference, or body, frame associated with the accelerometers and gyroscopes of the inertial measuring unit (“IMU”). The parameterized surface information, which provides a constraint, may be the orientation of the surface over which the vehicle that houses the receiver is moving. The receiver uses the initial GPS position to determine the location of the vehicle on the parameterized surface, and thus, the known surface orientation. The receiver then determines the roll, pitch and heading of the vehicle on the surface using the associated GPS velocity vector.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: March 18, 2008
    Assignee: NovAtel, Inc.
    Inventors: Thomas John Ford, Jason Hamilton, Michael Bobye
  • Patent number: 7193559
    Abstract: An inertial (“INS”)/GPS receiver includes an INS sub-system which incorporates, into a modified Kalman filter, GPS observables and/or other observables that span previous and current times. The INS filter utilizes the observables to update position information relating to both the current and the previous times, and to propagate the current position, velocity and attitude related information. The GPS observable may be delta phase measurements, and the other observables may be, for example, wheel pick-offs (or counts of wheel revolutions) that are used to calculate along track differences, and so forth. The inclusion of the measurements in the filter together with the current and the previous position related information essentially eliminates the effect of system dynamics from the system model. A position difference can thus be formed that is directly observable by the phase difference or along track difference measured between the previous and current time epochs.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: March 20, 2007
    Assignee: NovAtel, Inc.
    Inventors: Thomas John Ford, Jason Hamilton, Michael Bobye
  • Publication number: 20050060093
    Abstract: An inertial (“INS”)/GPS receiver uses injected alignment data to determine the alignment of the INS sub-system when the receiver is in motion during start-up. The alignment data is determined from parameterized surface information, measured GPS velocity, and a known or predetermined angular relationship between the vehicle on which the receiver is mounted and an inertial measurement reference, or body, frame associated with the accelerometers and gyroscopes of the inertial measuring unit (“IMU”). The parameterized surface information, which provides a constraint, may be the orientation of the surface over which the vehicle that houses the receiver is moving. The receiver uses the initial GPS position to determine the location of the vehicle on the parameterized surface, and thus, the known surface orientation. The receiver then determines the roll, pitch and heading of the vehicle on the surface using the associated GPS velocity vector.
    Type: Application
    Filed: September 2, 2004
    Publication date: March 17, 2005
    Inventors: Thomas Ford, Jason Hamilton, Michael Bobye
  • Publication number: 20040150557
    Abstract: An inertial (“INS”)/GPS receiver includes an INS sub-system which incorporates, into a modified Kalman filter, GPS observables and/or other observables that span previous and current times. The INS filter utilizes the observables to update position information relating to both the current and the previous times, and to propagate the current position, velocity and attitude related information. The GPS observable may be delta phase measurements, and the other observables may be, for example, wheel pick-offs (or counts of wheel revolutions) that are used to calculate along track differences, and so forth. The inclusion of the measurements in the filter together with the current and the previous position related information essentially eliminates the effect of system dynamics from the system model. A position difference can thus be formed that is directly observable by the phase difference or along track difference measured between the previous and current time epochs.
    Type: Application
    Filed: January 15, 2004
    Publication date: August 5, 2004
    Inventors: Thomas John Ford, Jason Hamilton, Michael Bobye