Patents by Inventor Michael Boers

Michael Boers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12046820
    Abstract: An antenna module that includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells on a first surface of the antenna substrate, a plurality of packaged circuitry on a second surface of the antenna substrate, and a plurality of supporting balls mounted on the second surface of the antenna substrate. The plurality of packaged circuitry includes a plurality of radio-frequency (RF) chips on the second surface of the antenna substrate. Each of the plurality of 3-D antenna cells comprises a raised antenna patch with a plurality of projections and a plurality of supporting legs, where at least a relief cut is provided between one of the plurality of projections and one of the plurality of supporting legs.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: July 23, 2024
    Assignee: Movandi Corporation
    Inventors: Seunghwan Yoon, Zhihui Wang, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 12003029
    Abstract: An antenna module that includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells on a first surface of the antenna substrate, a plurality of packaged circuitry on a second surface of the antenna substrate, and a plurality of supporting balls mounted on the second surface of the antenna substrate. The plurality of packaged circuitry includes a plurality of radio-frequency (RF) chips on the second surface of the antenna substrate. Each of the plurality of 3-D antenna cells comprises a raised antenna patch with a plurality of projections and a plurality of supporting legs, where at least a relief cut is provided between one of the plurality of projections and one of the plurality of supporting legs.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: June 4, 2024
    Assignee: Movandi Corporation
    Inventors: Seunghwan Yoon, Zhihui Wang, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 11990978
    Abstract: An active repeater device includes a primary sector and at least a secondary sector communicatively coupled to the primary sector receives or transmits a first beam of input RF signals having a first beam pattern from or to a base station, respectively. The primary sector includes an baseband signal processor and a first radio head (RH) unit. The secondary sector comprises a second RH unit. Beamforming coefficients are generated to convert the first beam pattern of the first beam of input RF signals to a second beam pattern based on a location of each of a plurality of user equipment (UEs). A second beam of output RF signals in the second beam pattern is transmitted from or received by, respectively, the secondary sector to or from, respectively, the plurality of UEs based on the generated beamforming coefficients and the received first beam of input RF signals.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: May 21, 2024
    Assignee: Movandi Corporation
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 11956061
    Abstract: An active repeater device includes a primary sector and at least a secondary sector communicatively coupled to the primary sector receives or transmits a first beam of input RF signals having a first beam pattern from or to a base station, respectively. The primary sector includes an baseband signal processor and a first radio head (RH) unit. The secondary sector comprises a second RH unit. Beamforming coefficients are generated to convert the first beam pattern of the first beam of input RF signals to a second beam pattern based on a location of each of a plurality of user equipment (UEs). A second beam of output RF signals in the second beam pattern is transmitted from or received by, respectively, the secondary sector to or from, respectively, the plurality of UEs based on the generated beamforming coefficients and the received first beam of input RF signals.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: April 9, 2024
    Assignee: Movandi Corporation
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 11916642
    Abstract: An active repeater device includes a primary sector and at least a secondary sector communicatively coupled to the primary sector receives or transmits a first beam of input RF signals having a first beam pattern from or to a base station, respectively. The primary sector includes an baseband signal processor and a first radio head (RH) unit. The secondary sector comprises a second RH unit. Beamforming coefficients are generated to convert the first beam pattern of the first beam of input RF signals to a second beam pattern based on a location of each of a plurality of user equipment (UEs). A second beam of output RF signals in the second beam pattern is transmitted from or received by, respectively, the secondary sector to or from, respectively, the plurality of UEs based on the generated beamforming coefficients and the received first beam of input RF signals.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: February 27, 2024
    Assignee: Movandi Corporation
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 11901635
    Abstract: An apparatus includes a plurality of antenna modules and a printed circuit board (PCB) having a plurality of holes embedded with a heat sink. Each antenna module includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells mounted on a first surface of the antenna substrate, and a plurality of packaged circuitry mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Each of the plurality of antenna modules is mounted on a plurality of portions of the heat sink such that a corresponding packaged circuitry of the plurality of packaged circuitry is in a direct contact with the plurality of portions of the heat sink embedded within the plurality of holes.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: February 13, 2024
    Assignee: MOVANDI CORPORATION
    Inventors: Seunghwan Yoon, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 11855356
    Abstract: An apparatus includes a plurality of antenna modules and a printed circuit board (PCB) having a plurality of holes embedded with a heat sink. Each antenna module includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells mounted on a first surface of the antenna substrate, and a plurality of packaged circuitry mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Each of the plurality of antenna modules is mounted on a plurality of portions of the heat sink such that a corresponding packaged circuitry of the plurality of packaged circuitry is in a direct contact with the plurality of portions of the heat sink embedded within the plurality of holes.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: December 26, 2023
    Assignee: MOVANDI CORPORATION
    Inventors: Seunghwan Yoon, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 11848496
    Abstract: A communication device includes a system board that includes a plurality of chips. Each chip in plurality of chips includes a plurality of antennas. A system cover coupled to system board includes a plurality of lenses. Each lens is configured to cover an antenna of plurality of antennas as a radome enclosure. Each lens includes a base, and a first tubular membrane coupled to base. A second membrane coupled to first tubular membrane. First tubular membrane and Second membrane cause the lens to have a bell shape. A support structure coupled to first tubular membrane. Support structure facilitates coupling of plurality of lenses to system cover. Each chip comprises a feeder array that further comprises a plurality of antenna elements that are positioned at a proximal distance from base of a lens, A distribution of a gain of input RF signals is substantially equalized across plurality of antenna elements.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: December 19, 2023
    Assignee: Movandi Corporation
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Publication number: 20230318205
    Abstract: A wireless communications system includes a first transceiver with a first phased array antenna panel having horizontal-polarization receive antennas and vertical-polarization transmit antennas, where the horizontal-polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the vertical-polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 5, 2023
    Inventors: Ahmadreza ROFOUGARAN, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Seunghwan YOON, Alfred Grau Besoli, Maryam ROFOUGARAN
  • Publication number: 20230299500
    Abstract: A communication device includes a system board that includes a plurality of chips. Each chip in plurality of chips includes a plurality of antennas. A system board cover coupled to system board includes a plurality of lenses. Each lens is configured to cover an antenna of plurality of antennas as a radome enclosure. Each lens includes a base and a first tubular membrane coupled to base. A second membrane is coupled to the first tubular membrane. A support structure is coupled to the first tubular membrane. The support structure facilitates coupling of plurality of lenses to system board cover. The system board cover includes a feeder array that includes a plurality of antenna elements that are positioned at a proximal distance from base of a lens and the proximal distance of the system board from the base of the lens is less than a focal length of the lens.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 21, 2023
    Inventors: Ahmadreza ROFOUGARAN, Alfred Grau Besoli, Seunghwan YOON, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Maryam ROFOUGARAN, Enver Adas, Kartik SRIDHARAN
  • Publication number: 20230299463
    Abstract: A phased array antenna panel includes a first plurality of antennas, a first radio frequency (RF) front end chip, a second plurality of antennas, a second RF front end chip, and a combiner RF chip. The first and second RF front end chips receive respective first and second input signals from the first and second pluralities of antennas, and produce respective first and second output signals based on the respective first and second input signals. The combiner RF chip can receive the first and second output signals and produce a power combined output signal that is a combination of powers of the first and second output signals. Alternatively, a power combiner can receive the first and second output signals and produce a power combined output signal, and the combiner RF chip can receive the power combined output signal.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 21, 2023
    Inventors: Ahmadreza ROFOUGARAN, Seunghwan YOON, Alfred Grau Besoli, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Maryam ROFOUGARAN
  • Publication number: 20230299501
    Abstract: A method in a communication device that includes a system board having a plurality of chips is described. The method includes receiving a lens-guided beam of input radio frequency (RF) signals through a lens, where each chip of the plurality of chip comprises a plurality of antennas, the lens covers a chip of the plurality of chips, adjusting a proximal distance between the lens and the chip such that the proximal distance is less than a focal length of the lens, and substantially equalizing a distribution of a gain from the received lens-guided beam of the input RF signals from a radiation surplus region to a radiation deficient region based on a defined shape of the lens and the proximal distance.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 21, 2023
    Inventors: Ahmadreza ROFOUGARAN, Alfred Grau Besoli, Seunghwan YOON, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Maryam ROFOUGARAN, Enver Adas, Kartik SRIDHARAN
  • Patent number: 11742586
    Abstract: A communication device includes a first lens, a feeder array, and control circuitry communicatively coupled to the feeder array. The first lens is associated with a defined shape, which further exhibits a defined distribution of dielectric constant. The feeder array includes a plurality of antenna elements that are positioned in proximity to the first lens. The control circuitry equalizes a distribution of a gain from the received first lens-guided beam of input RF signals across the feeder array and different scan directions of the plurality of antenna elements. The equalized distribution of gain is based on the defined distribution of dielectric constant within the first lens and the proximity of the feeder array to the first lens.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: August 29, 2023
    Assignee: Movandi Corporation
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Patent number: 11728881
    Abstract: An active repeater device including a first antenna array, a controller, and one or more secondary sectors receives or transmits a first beam of input RF signals from or to, respectively, a first base station operated by a first service provider and a second beam of input RF signals from or to, respectively, a second base station operated by a second service provider. A controller assigns a first beam setting to a first group of customer premises equipment (CPEs) and a second beam setting to a second group of CPEs, based on one or more corresponding signal parameters associated with the each corresponding group of CPEs. A second antenna array of the second RH unit concurrently transmits or received a first beam of output RF signals to or from the first group of CPEs and a second beam of output RF signals to the second group of CPEs.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: August 15, 2023
    Assignee: Movandi Corporation
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 11721910
    Abstract: A communication device includes a lens having a defined shape. A feeder array comprising a plurality of antenna elements that are positioned in a specified proximal distance from the lens to receive a lens-guided beam of input radio frequency (RF) signals through the lens. The specified proximal distance is less than a focal length of the lens. The lens covers the feeder array as a radome enclosure. A distribution of a gain from the received lens-guided beam of input RF signals is substantially equalized from a radiation surplus region to a radiation deficient region of the feeder array to increase at least a reception sensitivity of the plurality of antenna elements for at least the lens-guided beam of input RF signals, based on the defined shape of the lens and the specified proximal distance of the feeder array to the lens.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: August 8, 2023
    Assignee: Movandi Corporation
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Patent number: 11715890
    Abstract: A wireless communications system includes a first transceiver with a first phased array antenna panel having horizontal-polarization receive antennas and vertical-polarization transmit antennas, where the horizontal-polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the vertical-polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: August 1, 2023
    Assignee: Movandi Corporation
    Inventors: Ahmadreza Rofougaran, Farid Shirinfar, Sam Gharavi, Michael Boers, Seunghwan Yoon, Alfred Grau Besoli, Maryam Rofougaran
  • Patent number: 11715884
    Abstract: A communication device includes a system board that includes a plurality of chips. Each chip in plurality of chips includes a plurality of antennas. A system cover coupled to system board includes a plurality of lenses. Each lens is configured to cover an antenna of plurality of antennas as a radome enclosure. Each lens includes a base, and a first tubular membrane coupled to base. A second membrane coupled to first tubular membrane. First tubular membrane and Second membrane cause the lens to have a bell shape. A support structure coupled to first tubular membrane. Support structure facilitates coupling of plurality of lenses to system cover. Each chip comprises a feeder array that further comprises a plurality of antenna elements that are positioned at a proximal distance from base of a lens, A distribution of a gain of input RF signals is substantially equalized across plurality of antenna elements.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: August 1, 2023
    Assignee: Movandi Corporation
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Patent number: 11705638
    Abstract: A communication device includes a first lens, a feeder array, and control circuitry communicatively coupled to the feeder array. The first lens is associated with a defined shape, which further exhibits a defined distribution of dielectric constant. The feeder array includes a plurality of antenna elements that are positioned in proximity to the first lens. The control circuitry equalizes a distribution of a gain from the received first lens-guided beam of input RF signals across the feeder array and different scan directions of the plurality of antenna elements. The equalized distribution of gain is based on the defined distribution of dielectric constant within the first lens and the proximity of the feeder array to the first lens.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: July 18, 2023
    Assignee: Movandi Corporation
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Patent number: 11695467
    Abstract: A device includes a primary sector and secondary sectors communicatively coupled to the primary sector. The processor included in the primary sector is configured to down convert a Radio Frequency (RF) signals with a first frequency to an analog baseband (IQ) signal with a second frequency, and receive a second digital baseband signal that comprises a first digital baseband signal and a digital echo signal. The first digital baseband signal comprises a training sequence signal. Further, the processor estimates a plurality of filter taps of the FIR filter based on the digital echo signal and estimate the digital echo signal in the received second digital baseband signal based on the first digital baseband signal and the plurality of filter taps of the FIR filter. The estimated digital echo signal is removed from at least one current digital baseband signal based on the down conversion of the RF signals.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: July 4, 2023
    Assignee: Movandi Corporation
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Publication number: 20230208487
    Abstract: A system including a plurality of circuits in a first radio frequency (RF) device which are configured to control a plurality of reflector devices based on a set of criteria. The controlled plurality of reflector devices transmit a plurality of RF signals in a specified direction and a specified location of a second RF device within transmission range of the controlled plurality of reflector devices. The plurality of RF signals are transmitted in the specified direction and the specified location of a second RF device based on a request for signal cancellation. The request for the signal cancellation is based on a noise from the second RF device and the plurality of RF signals are cancelled in the specified direction and the specified location of the second RF device.
    Type: Application
    Filed: February 27, 2023
    Publication date: June 29, 2023
    Inventors: Kartik SRIDHARAN, Ahmadreza ROFOUGARAN, Michael BOERS, Seunghwan YOON, Sam GHARAVI, Donghyup SHIN, Farid SHIRINFAR, Stephen WU, Maryam ROFOUGARAN