Patents by Inventor Michael C. Brupbacher

Michael C. Brupbacher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926925
    Abstract: Methods and systems for growing thin films via molecular-beam epitaxy (MBE) on substrates are provided. The methods and systems utilize a thermally conductive backing plate including an infrared-absorbing coating (IAC) formed, for example, on one side of the thermally conductive backing plate to provide an asymmetric emissivity that absorbs infrared radiation (IR) on the side having the IRC and does not on the non-coated side of the thermally conductive backing plate (e.g., refractive metal or alloy). The asymmetric emissivity shields the thin film being deposited on a substrate from the IR during formation.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: March 12, 2024
    Assignee: The Johns Hopkins University
    Inventors: David B. Shrekenhamer, Adrian A. Podpirka, Michael C. Brupbacher
  • Publication number: 20220324758
    Abstract: A composite precursor powder, including one or more metals or metalloids, and one or more oxides, wherein a molar ratio of the one or more metals or metalloids to the one or more oxides is from about 1:0.01 to about 1:4, and wherein the molar ratio of the one or more metals or metalloids to the one or more oxides is configured according to a desired volumetric change of the composite precursor powder when converted to a non-oxide ceramic.
    Type: Application
    Filed: October 1, 2020
    Publication date: October 13, 2022
    Inventors: Adam B. PETERS, Michael C. BRUPBACHER, Dajie ZHANG, Dennis NAGLE
  • Publication number: 20210140069
    Abstract: Methods and systems for growing thin films via molecular-beam epitaxy (MBE) on substrates are provided. The methods and systems utilize a thermally conductive backing plate including an infrared-absorbing coating (IAC) formed, for example, on one side of the thermally conductive backing plate to provide an asymmetric emissivity that absorbs infrared radiation (IR) on the side having the IRC and does not on the non-coated side of the thermally conductive backing plate (e.g., refractive metal or alloy). The asymmetric emissivity shields the thin film being deposited on a substrate from the IR during formation.
    Type: Application
    Filed: November 11, 2020
    Publication date: May 13, 2021
    Inventors: David B. Shrekenhamer, Adrian A. Podpirka, Michael C. Brupbacher
  • Publication number: 20210078107
    Abstract: Metal ceramic composites, or metallic matrix composites (MMCs), may be formed by additive manufacturing (AM) processing of powder beds including a plurality of metallic particles of one or more metals and a plurality of ceramic particles of one or more ceramic materials. The presence of the ceramic particles during the AM process changes the optical properties and/or thermal conductivity of the powder bed since the ceramic particles have markedly different optical properties and/or thermal conductivity relative to metal particles. These optical properties and/or thermal conductivities of the ceramic particles can be tailored in different areas within a given layer of the powder bed to change energy absorption of an energy beam in the different areas. The resulting MMCs exhibit significantly improved performance characteristics, including increases in strength properties, while maintaining ductility and improvement of resistance to pitting and crevice corrosion, among others characteristics.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 18, 2021
    Inventors: Steven M. Storck, Ian D. McCue, Michael C. Brupbacher, Rengaswamy Srinivasan