Patents by Inventor Michael C. Harris

Michael C. Harris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111094
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Publication number: 20240108334
    Abstract: Methods, devices, and systems for controlling a tissue-treatment motion by a surgical instrument are disclosed.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Taylor W. Aronhalt, Michael J. Vendely, Shane R. Adams, Nicholas J. Ross, Matthew D. Cowperthwait, Jason L. Harris, Kevin M. Fiebig, Eric B. LaFay, Jose Luis De Cordoba Matilla, Raymond E. Parfett, Curtis A. Maples, Sarah A. Worthington, Jacqueline C. Aronhalt
  • Publication number: 20240103219
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Patent number: 11936434
    Abstract: Systems and methods for performing signed matrix operations using a linear photonic processor are provided. The linear photonic processor is formed as an array of first amplitude modulators and second amplitude modulators, the first amplitude modulators configured to encode elements of a vector into first optical signals and the second amplitude modulators configured to encode a product between the vector elements and matrix elements into second optical signals. An apparatus may be used to implement a signed value of an output of the linear processor. The linear photonic processor may be configured to perform matrix-vector and/or matrix-matrix operations.
    Type: Grant
    Filed: April 26, 2023
    Date of Patent: March 19, 2024
    Assignee: Lightmatter, Inc.
    Inventors: Darius Bunandar, Nicholas C. Harris, Michael Gould, Carl Ramey, Tomo Lazovich
  • Patent number: 11931110
    Abstract: A surgical instrument is disclosed comprising a control system and a strain gage circuit. The operation of the control system is modifiable by an input from the strain gage circuit.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 19, 2024
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Michael J. Vendely, Jason L. Harris, Gregory J. Bakos, David C. Yates
  • Patent number: 4873629
    Abstract: A computer (20) is configured for optimizing the processing rate of instructions and the throughput of data. The computer (20) includes a main memory (99), a memory control unit (22), a physical cache unit (100), and a central processor (156). A instruction processing unit (126) is included within the central processor (156). The function of the instruction processing unit (126) is to decode instructions and produce instruction execution commands or directing the execution of the instructions within the central processor (156). Instructions are transferred from the main memory (99) into a register (180) where the address fields of the instructions are decoded to produce a cracked instruction and these instructions are stored in a logical instruction cache (210). As the cracked instructions are selected they are transferred to an output buffer and decoder (214) where the remaining fields of the instructions are decoded to produce instruction execution commands.
    Type: Grant
    Filed: December 15, 1987
    Date of Patent: October 10, 1989
    Assignee: Convex Computer Corporation
    Inventors: Michael C. Harris, David M. Chastain, Gary B. Gostin
  • Patent number: 4620275
    Abstract: A vector processing computer is configured to operate in a pipelined fashion wherein each of the functional units is essentially independent and is designed to carry out its operational function in the fastest possible manner. Vector elements are transmitted from memory, either main memory, a physical cache unit or a logical cache through a source bus where the elements are alternately loaded into the vector processing units. The vector control unit decodes the vector instructions and generates the required control commands for operating the registers and logical units within the vector processing units. Thus, the vector processing units essentially work in parallel to double the processing rate. The resulting vectors are transmitted through a destination bus to either the physical cache unit, the main memory, the logical cache or to an input/output processor.
    Type: Grant
    Filed: June 20, 1984
    Date of Patent: October 28, 1986
    Inventors: Steven J. Wallach, Thomas M. Jones, Frank J. Marshall, David A. Nobles, Kent A. Fuka, Steven M. Rowan, William H. Wallace, Harold W. Dozier, David M. Chastain, John W. Clark, Robert B. Kolstad, James E. Mankovich, Michael C. Harris, Jeffrey H. Gruger, Alan D. Gant, Harold D. Shelton, James R. Weatherford, Arthur T. Kimmel, Gary B. Gostin, Gilbert J. Hansen, John M. Golenbieski, Larry W. Spry, Gerald Matulka, Gaynel J. Lockhart, Michael E. Sydow