Patents by Inventor Michael C. Palazzotto

Michael C. Palazzotto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150153296
    Abstract: A humidity sensor element includes a dielectric substrate, a nonporous conductive electrode disposed on the dielectric substrate, a permeable conductive electrode having a thickness in a range of from 4 to 10 nanometers and permeable by water vapor, and a detection layer disposed between the nonporous conductive electrode and the permeable conductive electrode. Both conductive electrodes have respective conductive leads attached thereto. The detection layer includes a sulfonated copolymer including monomeric units comprising (I) and (II), Wherein x and y are independently integers in the range of from 2 to 6, and wherein each M independently represents H or an alkali metal. A humidity sensor including the humidity sensor element is also disclosed.
    Type: Application
    Filed: May 13, 2013
    Publication date: June 4, 2015
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Stefan H. Gryska, Krzysztof A. Lewinski, Michael C. Palazzotto
  • Patent number: 9018060
    Abstract: A variable capacitance sensor includes a first conductive electrode comprising electrically interconnected first conductive sheets; a second conductive electrode comprising electrically interconnected second conductive sheets, wherein the first conductive sheets are at least partially interleaved with the second conductive sheets, and wherein the second conductive electrode is electrically insulated from the first conductive electrode; and microporous dielectric material at least partially disposed between and contacting the first conductive sheets and the second conductive sheets. A method of making a variable capacitance sensor by replacing ceramic in a ceramic capacitor with a microporous material is also disclosed.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: April 28, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Stefan H. Gryska, Michael C. Palazzotto
  • Publication number: 20150109003
    Abstract: A method of using an absorptive sensor element includes: providing the absorptive sensor element, heating the absorptive sensor element to a temperature in a range of from 30° C. to 100° C., exposing the absorptive sensor element to an analyte vapor, and measuring a capacitance-related property of the absorptive sensor element and/or a spectral feature upon reflection of incident light. The absorptive sensor element comprises: a substrate, a first member disposed on the substrate, a second member, and a detection layer comprising a polymer of intrinsic microporosity disposed between and contacting the first member and the second member.
    Type: Application
    Filed: March 27, 2012
    Publication date: April 23, 2015
    Applicant: 3M Innovative Properties Company
    Inventors: Michael C. Palazzotto, Stefan H. Gryska, Myungchan Kang, Michael S. Wendland
  • Publication number: 20140309947
    Abstract: A method for identifying and quantitatively analyzing an unknown organic compound in a gaseous medium. More specifically, the method provides a gas sensor array (120a, 120b, 120c, 120d) coupled to a diluting channeling gas inlet (105) with a honeycomb configuration. Each sensor (120a, 120b, 120c, 120d) in the array receives the test gas after successive dilutions. Detected gas are identified by correlating the responses of each sensor with its associated dilution.
    Type: Application
    Filed: December 10, 2012
    Publication date: October 16, 2014
    Inventors: Stefan H. Gryska, Michael C. Palazzotto, Derek M. Maanum, Myungchan Kang
  • Publication number: 20140076048
    Abstract: A humidity sensor element includes a dielectric substrate, a nonporous conductive electrode disposed on the dielectric substrate, a permeable conductive electrode having a thickness in a range of from 4 to 10 nanometers and permeable by water vapor, and a detection layer sandwiched between the nonporous conductive electrode and the permeable conductive electrode. The permeable conductive electrode is parallel to the nonporous electrode. Both conductive electrodes have respective conductive leads attached thereto. The detection layer includes a copolymer having monomeric units comprising wherein M represents H, or an alkali metal. A humidity sensor including the humidity sensor element is also disclosed.
    Type: Application
    Filed: May 30, 2012
    Publication date: March 20, 2014
    Inventors: Stefan H. Gryska, Michael C. Palazzotto, Krzysztof A. Lewinski
  • Publication number: 20140028333
    Abstract: A vapor sensor includes a capacitance-related property sensor element (110), a heater circuit element (170), a capacitance-related property measurement circuit element (180), and at least one switch member (190). The capacitance-related property sensor element includes a dielectric substrate (120), a first conductive electrode (130), a second conductive electrode (140), and a layer of dielectric microporous material (150) disposed between and contacting the first conductive electrode and the second conductive electrode. The at least one switch member is capable of interrupting electrical communication between the first conductive electrode and the heater circuit element, and between the capacitance-related property measurement circuit element and the first conductive electrode.
    Type: Application
    Filed: April 4, 2012
    Publication date: January 30, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael C. Palazzotto, Justin Tungjunyatham, Stefan H. Gryska, Michael S. Wendland
  • Publication number: 20140025326
    Abstract: Methods of generating a reference correlation for use with an absorptive capacitance vapor sensor and calibration of the absorptive capacitance vapor sensor. An electronic article including the reference correlation and methods of using the same are also disclosed.
    Type: Application
    Filed: March 28, 2012
    Publication date: January 23, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Myungchan Kang, Michael C. Palazzotto, Stefan H. Gryska
  • Publication number: 20140021967
    Abstract: A method of using a sensor element includes: exposing a sensor element to an unknown analyte vapor; measuring a capacitance of the sensor element to obtain a measured capacitance; obtaining a true capacitance of the sensor element; exposing the semi-reflective conductive electrode to incident light and observing reflected light in order to measure a spectral change between the incident light and the reflected light; comparing the true capacitance and the measured spectral change, or at least one derivative thereof, to a reference library, the reference library comprising reference correlations between spectral change and true capacitance, or at least one derivative thereof, for a plurality of reference analyte vapors; and determining at least one of the chemical class or identity of the analyte vapor.
    Type: Application
    Filed: April 2, 2012
    Publication date: January 23, 2014
    Inventors: Myungchan Kang, Michael C. Palazzotto, Stefan H. Gryska
  • Publication number: 20130229194
    Abstract: A sensor element includes a first conductive electrode having a first conductive member electrically coupled thereto; an absorptive dielectric layer comprising a polymer of intrinsic microporosity; and a second conductive electrode having a second conductive member electrically coupled thereto. The second conductive electrode comprises at least one noble metal, has a thickness of from 4 to 10 nanometers and is permeable to at least one organic vapor. The absorptive dielectric layer is at least partially disposed between the first conductive electrode and the second conductive electrode. A method of making the sensor element, and sensor device containing it, are also disclosed.
    Type: Application
    Filed: September 7, 2011
    Publication date: September 5, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael C. Palazzotto, Stefan H. Gryska, Paul F. Baude, Myungchan Kang
  • Publication number: 20130186177
    Abstract: A sensor element (100) includes a first conductive electrode (120) having a first conductive member (122) electrically coupled thereto; an absorptive dielectric layer (130) comprising a polymer of intrinsic microporosity; and a second conductive electrode (140) having a second conductive member (142) electrically coupled thereto. The second conductive electrode comprises carbon nanotubes and is permeable to at least one organic vapor. The absorptive dielectric layer is at least partially disposed between the first conductive electrode and the second conductive electrode. A method of making the sensor element, and sensor device (200) containing it, are also disclosed.
    Type: Application
    Filed: August 25, 2011
    Publication date: July 25, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael C. Palazzotto, Stefan H. Gryska, Tzu-Chen Lee
  • Publication number: 20130088244
    Abstract: A variable capacitance sensor includes a first conductive electrode comprising electrically interconnected first conductive sheets; a second conductive electrode comprising electrically interconnected second conductive sheets, wherein the first conductive sheets are at least partially interleaved with the second conductive sheets, and wherein the second conductive electrode is electrically insulated from the first conductive electrode; and microporous dielectric material at least partially disposed between and contacting the first conductive sheets and the second conductive sheets. A method of making a variable capacitance sensor by replacing ceramic in a ceramic capacitor with a microporous material is also disclosed.
    Type: Application
    Filed: June 2, 2011
    Publication date: April 11, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Stefan H. Gryska, Michael C. Palazzotto
  • Patent number: 8409511
    Abstract: Sensing elements for sensing organic chemical analytes are disclosed. The sensing elements include a first electrode and a second electrode, and a substantially microporous, amorphous, hydrophobic, analyte-responsive organosilicate material in proximity to the first and second electrodes.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: April 2, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: John Christopher Thomas, Neal A. Rakow, Michael S. Wendland, Stefan H. Gryska, Michael C. Palazzotto, John E. Trend
  • Publication number: 20110254568
    Abstract: Sensing elements for sensing organic chemical analytes are disclosed. The sensing elements include a first electrode and a second electrode, and a substantially microporous, amorphous, hydrophobic, analyte-responsive organosilicate material in proximity to the first and second electrodes.
    Type: Application
    Filed: December 22, 2009
    Publication date: October 20, 2011
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: John Christopher Thomas, NealA. Rakow, Michael S. Wendland, Stefan H. Gryska, Michael C. Palazzotto, John E. Trend
  • Patent number: 7767143
    Abstract: Colorimetric sensors comprising a reflective surface and a curable layer are disclosed. Devices comprising the colorimetric sensors and methods of making the sensors and devices are also disclosed. Methods of using the sensors and devices in numerous applications are also disclosed.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: August 3, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Michael S. Wendland, Neal A. Rakow, Michael C. Palazzotto, Douglas E. Weiss
  • Publication number: 20100151553
    Abstract: Methods for detecting target biological analytes within sample material using acousto-mechanical energy generated by a sensor are disclosed. The acousto-mechanical energy may be provided using an acousto-mechanical sensor, e.g., a surface acoustic wave sensor such as, e.g., a shear horizontal surface acoustic wave sensor (e.g., a LSH-SAW sensor). The detection of the target biological analytes in sample material are enhanced by contacting the target biological analyte and/or the sensor surface with liposomes that amplify the sensor sensitivity by (1) modifying the rheological properties of the fluid near the sensor surface; (2) changing the mass attached to the surface; and/or (3) modifying the dielectric properties of the fluid near the sensor surface, the sensor surface itself and/or any intervening layers on the sensor surface.
    Type: Application
    Filed: December 28, 2007
    Publication date: June 17, 2010
    Inventors: Jason W. Bjork, Samuel J. Gason, Michael C. Palazzotto, Stephen B. Roscoe
  • Patent number: 7732633
    Abstract: Compositions are provided that include an electron donor and a sensitizing compound. More specifically, the electron donor is an arylsulfinate salt. Methods of polymerization are also provided that can be used to prepare polymeric material from a photopolymerizable composition that includes ethylenically unsaturated monomers and a photoinitiator system. The photoinitiator system includes an electron donor and a sensitizing compound.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: June 8, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Rajdeep S. Kalgutkar, Michael C. Palazzotto
  • Patent number: 7704751
    Abstract: A method of detecting organic vapors is described. More particularly, the method involves the use of an analyte sensor that contains a polymeric material having a relatively large intrinsic porosity and that is capable of fluorescence in the visible region of the electromagnetic spectrum. The method further includes exposing the analyte sensor to an environment that may contain an organic vapor and monitoring the analyte sensor for a change in a fluorescence signal. Although the organic vapor itself typically does not fluoresce in the visible wavelength range, presence of an organic vapor can alter the fluorescence signal of the analyte sensor.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: April 27, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Michael C. Palazzotto, Neal A. Rakow, Michael S. Wendland
  • Publication number: 20090203904
    Abstract: Compositions are provided that include an electron donor and a sensitizing compound. More specifically, the electron donor is an arylsulfinate salt. Methods of polymerization are also provided that can be used to prepare polymeric material from a photopolymerizable composition that includes ethylenically unsaturated monomers and a photoinitiator system. The photoinitiator system includes an electron donor and a sensitizing compound.
    Type: Application
    Filed: April 23, 2009
    Publication date: August 13, 2009
    Inventors: Rajdeep S. Kalgutkar, Michael C. Palazzotto
  • Patent number: 7556774
    Abstract: A method of making an optochemical sensor, the method comprising: providing a reflective substrate having a major surface; affixing a detection layer comprising at least one intrinsically microporous polymer to at least a portion of the major surface; depositing a substantially continuous semi-reflective metallic layer on at least a portion of the detection layer, the semi-reflective metallic layer comprising palladium and having a network of fine irregular cracks therein; and heating the detection layer and semi-reflective metallic layer in the presence of molecular oxygen at a temperature sufficient to cause the cracks to widen. Sensors prepared according to method are also disclosed.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: July 7, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Neal A. Rakow, Michael S. Wendland, Michael C. Palazzotto, Dora M. Paolucci, Richard J. Poirier, Stefan H. Gryska, John E. Trend, Moses M. David
  • Patent number: 7541389
    Abstract: Compositions are provided that include an electron donor and a sensitizing compound. More specifically, the electron donor is an arylsulfinate salt. Methods of polymerization are also provided that can be used to prepare polymeric material from a photopolymerizable composition that includes ethylenically unsaturated monomers and a photoinitiator system. The photoinitiator system includes an electron donor and a sensitizing compound.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: June 2, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Rajdeep S. Kalgutkar, Michael C. Palazzotto