Patents by Inventor Michael C. Tilley

Michael C. Tilley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200392450
    Abstract: Manufacturing system and method for creating multiple tissue constructs from cells. System can include a thaw subsystem (if the cells are provided in a frozen state), an expansion subsystem, a concentration subsystem, and a tissue maturation subsystem. Each of these subsystems is modular and can be reconfigured, and the process can be repeated depending on the specific tissue process being implemented. Multiple tissue types can be combined in multiple bioreactors. The activities of multiple bioreactors can be coordinated and controlled in an automated manner by a supervisor controller. The supervisor controller can receive user input at the start of the process, and can manage the process henceforth, alerting the user if user actions are required.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 17, 2020
    Inventors: Richard E. Andrews, Stephanie M. Miskell, Zachary T. Kops, Justin M. Ferrentino, Michael C. Tilley, Andrew K. Capulli, Keira L McGrath, Stuart A. Jacobson
  • Publication number: 20200325430
    Abstract: A system and method for printing cells in a medium. A multi-dimensional printer, stably constructed of low-mass parts, can include a computer numerically controlled system that can enable motors driving delivery systems. The motors can include encoders that can enable achieving arbitrary resolution. The motors can drive ballscrews to enable linear motion of delivery systems, and the delivery systems can enable printing of a biological material in a pre-selected pattern in a petri dish. The petri dish can accommodate a medium such as a gel, and can further accommodate a vision system that can detect actual position and deflection of the delivery system needle. The printer can accommodate multiple delivery systems and therefore multiple needles of various sizes.
    Type: Application
    Filed: July 12, 2017
    Publication date: October 15, 2020
    Inventors: Christopher C. Langenfeld, David D. B. Cannan, Dirk A. van der Merwe, Jonathan Parker, John C. Anastasiou, Michael C. Tilley, David Blumberg, JR.
  • Publication number: 20200284740
    Abstract: A magnetic resonance device for monitoring growth of tissue in one or more bioreactors. The device can include a first magnet and a second magnet that can form a uniform magnetic field of desired strength around at least one sample of effluent from at least one bioreactor. At the command of a controller, an RF signal can illuminate the at least one magnetized sample, and sensors can detect at least one echo signal from the at least one magnetized sample. The controller can characterize the at least one sample based on the at least one echo signal. A resonator can shape the at least one echo signal.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Inventors: David Blumberg, JR., Michael C. Tilley, Derek G. Kane, David C. Nivens
  • Patent number: 10663417
    Abstract: A magnetic resonance device for monitoring growth of tissue in one or more bioreactors. The device can include a first magnet and a second magnet that can form a uniform magnetic field of desired strength around at least one sample of effluent from at least one bioreactor. At the command of a controller, an RF signal can illuminate the at least one magnetized sample, and sensors can detect at least one echo signal from the at least one magnetized sample. The controller can characterize the at least one sample based on the at least one echo signal. A resonator can shape the at least one echo signal.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: May 26, 2020
    Assignee: DEKA Products Limited Partnership
    Inventors: David Blumberg, Jr., Michael C. Tilley, Derek G. Kane, David C. Nivens
  • Publication number: 20200157486
    Abstract: A transfer device designed to extract an amorphous or semi-solid structure, tissue, or construct from supporting media while maintaining the spatial integrity/organizational architecture thereof. The transfer device can include a controller, an actuator assembly, a plunger, and a needle. The controller can move the transfer device and the plunger independently.
    Type: Application
    Filed: January 24, 2020
    Publication date: May 21, 2020
    Inventors: Michael C. Tilley, JR., Richard E. Andrews, Dane C. Fawkes
  • Patent number: 10570362
    Abstract: A transfer device designed to extract an amorphous or semi-solid structure, tissue, or construct from supporting media while maintaining the spatial integrity/organizational architecture thereof. The transfer device can include a controller, an actuator assembly, a plunger, and a needle. The controller can move the transfer device and the plunger independently.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: February 25, 2020
    Assignee: DEKA Products Limited Partnership
    Inventors: Michael C. Tilley, Richard E. Andrews, Dane C. Fawkes
  • Publication number: 20190170672
    Abstract: A magnetic resonance device for monitoring growth of tissue in one or more bioreactors. The device can include a first magnet and a second magnet that can form a uniform magnetic field of desired strength around at least one sample of effluent from at least one bioreactor. At the command of a controller, an RF signal can illuminate the at least one magnetized sample, and sensors can detect at least one echo signal from the at least one magnetized sample. The controller can characterize the at least one sample based on the at least one echo signal. A resonator can shape the at least one echo signal.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 6, 2019
    Inventors: David Blumberg, JR., Michael C. Tilley, Derek G. Kane, David C. Nivens
  • Publication number: 20190017010
    Abstract: A transfer device designed to extract an amorphous or semi-solid structure, tissue, or construct from supporting media while maintaining the spatial integrity/organizational architecture thereof. The transfer device can include a controller, an actuator assembly, a plunger, and a needle. The controller can move the transfer device and the plunger independently.
    Type: Application
    Filed: August 30, 2018
    Publication date: January 17, 2019
    Inventors: Michael C. Tilley, JR., Richard E. Gautney, Dane C. Fawkes
  • Publication number: 20180127705
    Abstract: A system and method for growing and maintaining biological material including producing a protein associated with the tissue, selecting cells associated with the tissue, expanding the cells, creating at least one tissue bio-ink including the expanded cells, printing the at least one tissue bio-ink in at least one tissue growth medium mixture, growing the tissue from the printed at least one tissue bio-ink, and maintaining viability of the tissue.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 10, 2018
    Inventors: Christopher C. Langenfeld, David D. B. Cannan, Dirk A. van der Merwe, Dean Kamen, Jason A. Demers, Frederick Morgan, Timothy D. Moreau, Brian D. Tracey, Matthew Ware, Richard J. Lanigan, Michael A. Baker, David Blumberg, Richard E. Gautney, Derek G. Kane, Dane Fawkes, Thomas J. Bollenbach, Michael C. Tilley, Stuart A. Jacobson, John F. Mannisto
  • Publication number: 20170369827
    Abstract: A system and method for printing cells in a medium. A multi-dimensional printer, stably constructed of low-mass parts, can include a computer numerically controlled system that can enable motors driving delivery systems. The motors can include encoders that can enable achieving arbitrary resolution. The motors can drive ballscrews to enable linear motion of delivery systems, and the delivery systems can enable printing of a biological material in a pre-selected pattern in a petri dish. The petri dish can accommodate a medium such as a gel, and can further accommodate a vision system that can detect actual position and deflection of the delivery system needle. The printer can accommodate multiple delivery systems and therefore multiple needles of various sizes.
    Type: Application
    Filed: July 12, 2017
    Publication date: December 28, 2017
    Inventors: Christopher C. Langenfeld, David D. B. Cannan, Dirk A. van der Merwe, Jonathan Parker, John C. Anastasiou, Michael C. Tilley