Patents by Inventor Michael C. W. Kintner-Meyer

Michael C. W. Kintner-Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11169214
    Abstract: Systems, methods, and computer media for battery system management and non-linear estimation of battery state of charge are provided herein. Battery data is received for a time period over which a battery system has operated. The battery data represents the actual performance of the battery system over the time period. Sub-periods of charging or discharging can be identified in the time period. For the sub-periods of time, a curve can be fit to the battery data. Using the curves for the battery data for the sub-periods of time, an expected performance of the battery system, over a range of states-of-charge, can be determined. Operating instructions for the battery system can be provided based on the expected performance.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: November 9, 2021
    Assignee: Battelle Memorial Institute
    Inventors: Alasdair James Crawford, Vilayanur Venkataraman Viswanathan, Patrick Joseph Balducci, Trevor D. Hardy, Di Wu, Michael C. W. Kintner-Meyer
  • Patent number: 10663932
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: May 26, 2020
    Assignee: Battelle Memorial Institute
    Inventors: Richard M. Pratt, Donald J. Hammerstrom, Michael C. W. Kintner-Meyer, Francis K. Tuffner
  • Publication number: 20200127474
    Abstract: Systems, methods, and computer media for battery system management and non-linear estimation of battery state of charge are provided herein. Battery data is received for a time period over which a battery system has operated. The battery data represents the actual performance of the battery system over the time period. Sub-periods of charging or discharging can be identified in the time period. For the sub-periods of time, a curve can be fit to the battery data. Using the curves for the battery data for the sub-periods of time, an expected performance of the battery system, over a range of states-of-charge, can be determined. Operating instructions for the battery system can be provided based on the expected performance.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 23, 2020
    Applicant: Battelle Memorial Institute
    Inventors: Alasdair James Crawford, Vilayanur Venkataraman Viswanathan, Patrick Joseph Balducci, Trevor D. Hardy, Di Wu, Michael C.W. Kintner-Meyer
  • Patent number: 10547180
    Abstract: Systems, methods, and computer media for battery system management and non-linear estimation of battery state of charge are provided herein. Battery data is received for a time period over which a battery system has operated. The battery data represents the actual performance of the battery system over the time period. Sub-periods of charging or discharging can be identified in the time period. For the sub-periods of time, a curve can be fit to the battery data. Using the curves for the battery data for the sub-periods of time, an expected performance of the battery system, over a range of states-of-charge, can be determined. Operating instructions for the battery system can be provided based on the expected performance.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: January 28, 2020
    Assignee: Battelle Memorial Institute
    Inventors: Alasdair James Crawford, Vilayanur Venkataraman Viswanathan, Patrick Joseph Balducci, Trevor D. Hardy, Di Wu, Michael C. W. Kintner-Meyer
  • Publication number: 20180131200
    Abstract: Systems, methods, and computer media for battery system management and non-linear estimation of battery state of charge are provided herein. Battery data is received for a time period over which a battery system has operated. The battery data represents the actual performance of the battery system over the time period. Sub-periods of charging or discharging can be identified in the time period. For the sub-periods of time, a curve can be fit to the battery data. Using the curves for the battery data for the sub-periods of time, an expected performance of the battery system, over a range of states-of-charge, can be determined. Operating instructions for the battery system can be provided based on the expected performance.
    Type: Application
    Filed: December 30, 2016
    Publication date: May 10, 2018
    Inventors: Alasdair James Crawford, Vilayanur Venkataraman Viswanathan, Patrick Joseph Balducci, Trevor D. Hardy, Di Wu, Michael C.W. Kintner-Meyer
  • Patent number: 9753440
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: September 5, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Richard M. Pratt, Donald J. Hammerstrom, Michael C. W. Kintner-Meyer, Francis K. Tuffner
  • Publication number: 20170222437
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
    Type: Application
    Filed: April 13, 2017
    Publication date: August 3, 2017
    Applicant: Battelle Memorial Institute
    Inventors: Richard M. Pratt, Donald J. Hammerstrom, Michael C.W. Kintner-Meyer, Francis K. Tuffner
  • Patent number: 8700225
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: April 15, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Richard M. Pratt, Donald J. Hammerstrom, Michael C. W. Kintner-Meyer, Francis K. Tuffner
  • Publication number: 20130268132
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
    Type: Application
    Filed: June 4, 2013
    Publication date: October 10, 2013
    Inventors: Richard M. Pratt, Donald J. Hammerstrom, Michael C.W. Kintner-Meyer, Francis K. Tuffner
  • Patent number: 8478452
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: July 2, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Richard M. Pratt, Donald J. Hammerstrom, Michael C. W. Kintner-Meyer, Francis K. Tuffner
  • Publication number: 20120200160
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
    Type: Application
    Filed: April 10, 2012
    Publication date: August 9, 2012
    Inventors: Richard M. Pratt, Donald J. Hammerstrom, Michael C.W. Kintner-Meyer, Francis K. Tuffner
  • Patent number: 8183826
    Abstract: Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: May 22, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Francis K. Tuffner, Michael C. W. Kintner-Meyer, Donald J. Hammerstrom, Richard M. Pratt
  • Publication number: 20110245987
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
    Type: Application
    Filed: April 6, 2010
    Publication date: October 6, 2011
    Inventors: Richard M. Pratt, Donald J. Hammerstrom, Michael C. W. Kintner-Meyer, Francis K. Tuffner
  • Publication number: 20100289451
    Abstract: Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems are described. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.
    Type: Application
    Filed: May 15, 2009
    Publication date: November 18, 2010
    Inventors: Francis K. Tuffner, Michael C.W. Kintner-Meyer, Donald J. Hammerstrom, Richard M. Pratt