Patents by Inventor Michael Carsten Bosse

Michael Carsten Bosse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210096264
    Abstract: Classifying sensor data as being associated with ground (as opposed to an object) may comprise determining a number of channels of sensor data that have returns in them, setting a number of control points and a number of knots of a curve based at least in part on the number of channels that have returns, and fitting a curve having the number of control points and the number of knots to the sensor data. The curve may be used to distinguish sensor data associated with the ground from sensor data associated with an object. Determining the curve may additionally or alternatively include limiting an elevation value of a control point and/or knot based on elevation value(s) of the sensor data, weighting the sensor data based at least in part on elevation values associated with the sensor data, and/or adjusting knot spacing, et alia.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: Michael Carsten Bosse, Jacob Daniel Boydston, Joshua Kriser Cohen, Chuang Wang
  • Publication number: 20210063560
    Abstract: Techniques for accurately determining a velocity of a radar (or ultrasonic, sonar) device and/or a moveable platform associated with the radar device may comprise fitting a model to a set of Doppler values received from the device, and determining the velocity based at least in part on the model. Fitting the model to the set may comprise determining a residual between an estimated Doppler value generated by the model and a measured Doppler value and altering a parameter of the model based at least in part on an asymmetrical loss function and the residual. The asymmetrical loss function may comprise a first portion that comprises a square of the residual and a second portion that is linearly proportional to the residual. The second portion may be based at least in part on an estimated velocity and/or estimated Doppler value and may account for out-of-plane returns.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 4, 2021
    Inventor: Michael Carsten Bosse
  • Publication number: 20200372285
    Abstract: Techniques are discussed for determining a location of a vehicle in an environment using a feature corresponding to a portion of an image representing an object in the environment which is associated with a frequently occurring object classification. For example, an image may be received and semantically segmented to associate pixels of the image with a label representing an object of an object type (e.g., extracting only those portions of the image which represent lane boundary markings). Features may then be extracted, or otherwise determined, which are limited to those portions of the image. In some examples, map data indicating a previously mapped location of a corresponding portion of the object may be used to determine a difference. The difference (or sum of differences for multiple observations) are then used to localize the vehicle with respect to the map.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 26, 2020
    Inventors: Derek Adams, Nathaniel Jon Kaiser, Michael Carsten Bosse
  • Patent number: 9835717
    Abstract: A three dimensional scanning beam and imaging system (800) enable economical and efficient three dimensional scans of an environment. The system (800) includes a ranging apparatus (805), and a reactive linkage mechanism (810) having a first end (815) and a second end (820). The first end (815) is connected to the ranging apparatus (805) and the second end (820) is connected to an object (825) that moves the system (800) through an environment. Additionally, an imaging apparatus (840) is operatively coupled to either the first end (815) or the second end (820) of the reactive linkage mechanism (810). In use acceleration of the object (825) with respect to the environment is converted by the reactive linkage mechanism (810) to motion of the ranging apparatus (805) with respect to the object (825), which increases the field of view of the ranging apparatus (805) with respect to the environment.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: December 5, 2017
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Michael Carsten Bosse, Robert Michael Zlot
  • Publication number: 20160223652
    Abstract: A three dimensional scanning beam and imaging system (800) enable economical and efficient three dimensional scans of an environment. The system (800) includes a ranging apparatus (805), and a reactive linkage mechanism (810) having a first end (815) and a second end (820). The first end (815) is connected to the ranging apparatus (805) and the second end (820) is connected to an object (825) that moves the system (800) through an environment. Additionally, an imaging apparatus (840) is operatively coupled to either the first end (815) or the second end (820) of the reactive linkage mechanism (810). In use acceleration of the object (825) with respect to the environment is converted by the reactive linkage mechanism (810) to motion of the ranging apparatus (805) with respect to the object (825), which increases the field of view of the ranging apparatus (805) with respect to the environment.
    Type: Application
    Filed: April 17, 2013
    Publication date: August 4, 2016
    Inventors: Michael Carsten Bosse, Robert Michael Zlot