Patents by Inventor Michael Chapline

Michael Chapline has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110063758
    Abstract: A magnetic tunnel junction having a first electrode separated from a second electrode by a tunneling barrier is provided. The tunneling barrier is a ferromagnetic insulator that provides a spin dependent barrier energy for tunneling. The first electrode includes a ferromagnetic, electrically conductive layer. Electrons emitted from the first electrode toward the tunneling barrier are partially or completely spin-polarized according to the magnetization of the ferromagnetic electrode layer. The electrical resistance of the tunnel junction depends on the relative orientation of the electrode layer magnetization and the tunneling barrier magnetization. Such tunnel junctions are widely applicable to spintronic devices, such as spin valves, magnetic tunnel junctions, spin switches, spin valve transistors, spin filters, and to spintronic applications such as magnetic recording, magnetic random access memory, ultrasensitive magnetic field sensing (including magnetic biosensing), spin injection and spin detection.
    Type: Application
    Filed: October 26, 2010
    Publication date: March 17, 2011
    Inventors: Shan X. Wang, George Michael Chapline
  • Patent number: 6900580
    Abstract: A field emission device having bundles of aligned parallel carbon nanotubes on a substrate. The carbon nanotubes are oriented perpendicular to the substrate. The carbon nanotube bundles may be up to 300 microns tall, for example. The bundles of carbon nanotubes extend only from regions of the substrate patterned with a catalyst material. Preferably, the catalyst material is iron oxide. The substrate is preferably porous silicon, as this produces the highest quality, most well-aligned nanotubes. Smooth, nonporous silicon or quartz can also be used as the substrate. The method of the invention starts with forming a porous layer on a silicon substrate by electrochemical etching. Then, a thin layer of iron is deposited on the porous layer in patterned regions. The iron is then oxidized into iron oxide, and then the substrate is exposed to ethylene gas at elevated temperature. The iron oxide catalyzes the formation of bundles of aligned parallel carbon nanotubes which grow perpendicular to the substrate surface.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: May 31, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hongjie Dai, Shoushan Fan, Michael Chapline, Nathan Franklin, Thomas Tombler
  • Publication number: 20010019238
    Abstract: A field emission device having bundles of aligned parallel carbon nanotubes on a substrate. The carbon nanotubes are oriented perpendicular to the substrate. The carbon nanotube bundles may be up to 300 microns tall, for example. The bundles of carbon nanotubes extend only from regions of the substrate patterned with a catalyst material. Preferably, the catalyst material is iron oxide. The substrate is preferably porous silicon, as this produces the highest quality, most well-aligned nanotubes. Smooth, nonporous silicon or quartz can also be used as the substrate. The method of the invention starts with forming a porous layer on a silicon substrate by electrochemical etching. Then, a thin layer of iron is deposited on the porous layer in patterned regions. The iron is then oxidized into iron oxide, and then the substrate is exposed to ethylene gas at elevated temperature. The iron oxide catalyzes the formation of bundles of aligned parallel carbon nanotubes which grow perpendicular to the substrate surface.
    Type: Application
    Filed: May 15, 2001
    Publication date: September 6, 2001
    Inventors: Hongjie Dai, Shoushan Fan, Michael Chapline, Nathan Franklin, Thomas Tombler
  • Patent number: 6232706
    Abstract: A field emission device having bundles of aligned parallel carbon nanotubes on a substrate. The carbon nanotubes are oriented perpendicular to the substrate. The carbon nanotube bundles may be up to 300 microns tall, for example. The bundles of carbon nanotubes extend only from regions of the substrate patterned with a catalyst material. Preferably, the catalyst material is iron oxide. The substrate is preferably porous silicon, as this produces the highest quality, most well-aligned nanotubes. Smooth, nonporous silicon or quartz can also be used as the substrate. The method of the invention starts with forming a porous layer on a silicon substrate by electrochemical etching. Then, a thin layer of iron is deposited on the porous layer in patterned regions. The iron is then oxidized into iron oxide, and then the substrate is exposed to ethylene gas at elevated temperature. The iron oxide catalyzes the formation of bundles of aligned parallel carbon nanotubes which grow perpendicular to the substrate surface.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: May 15, 2001
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hongjie Dai, Shoushan Fan, Michael Chapline, Nathan Franklin, Thomas Tombler