Patents by Inventor Michael Choti

Michael Choti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230338101
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Application
    Filed: June 12, 2023
    Publication date: October 26, 2023
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Patent number: 11717365
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: August 8, 2023
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Publication number: 20220354603
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Application
    Filed: July 11, 2022
    Publication date: November 10, 2022
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Patent number: 11399909
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: August 2, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Publication number: 20200163732
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 28, 2020
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Patent number: 10646293
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: May 12, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Patent number: 10603127
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: March 31, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Publication number: 20170128145
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Publication number: 20170128041
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Publication number: 20170128144
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Publication number: 20110237947
    Abstract: A robotic 5D ultrasound system and method, for use in a computer integrated surgical system, wherein 3D ultrasonic image data is integrated over time with strain (i.e., elasticity) image data. By integrating the ultrasound image data and the strain image data, the present invention is capable of accurately identifying a target tissue in surrounding tissue; segmenting, monitoring and tracking the target tissue during the surgical procedure; and facilitating proper planning and execution of the surgical procedure, even where the surgical environment is noisy and the target tissue is isoechoic.
    Type: Application
    Filed: February 15, 2011
    Publication date: September 29, 2011
    Applicant: The Johns Hopkins University
    Inventors: Emad M. Boctor, Michael Choti, Gabor Fichtinger, Russell Taylor, Jerry L. Prince
  • Patent number: 7901357
    Abstract: A robotic 5D ultrasound system and method, for use in a computer integrated surgical system, wherein 3D ultrasonic image data is integrated over time with strain (i.e., elasticity) image data. By integrating the ultrasound image data and the strain image data, the present invention is capable of accurately identifying a target tissue in surrounding tissue; segmenting, monitoring and tracking the target tissue during the surgical procedure; and facilitating proper planning and execution of the surgical procedure, even where the surgical environment is noisy and the target tissue is isoechoic.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: March 8, 2011
    Assignee: The John Hopkins University
    Inventors: Emad M. Boctor, Michael Choti, Gabor Fichtinger, Russell Taylor, Jerry L. Prince
  • Publication number: 20070021738
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Application
    Filed: June 6, 2006
    Publication date: January 25, 2007
    Applicants: Intuitive Surgical INC., John Hopkins University
    Inventors: Christopher Hasser, Russell Taylor, Michael Choti, Joshua Leven
  • Publication number: 20050187473
    Abstract: A robotic 5D ultrasound system and method, for use in a computer integrated surgical system, wherein 3D ultrasonic image data is integrated over time with strain (i.e., elasticity) image data. By integrating the ultrasound image data and the strain image data, the present invention is capable of accurately identifying a target tissue in surrounding tissue; segmenting, monitoring and tracking the target tissue during the surgical procedure; and facilitating proper planning and execution of the surgical procedure, even where the surgical environment is noisy and the target tissue is isoechoic.
    Type: Application
    Filed: July 21, 2004
    Publication date: August 25, 2005
    Inventors: Emad Boctor, Michael Choti, Gabor Fichtinger, Russell Taylor, Jerry Prince