Patents by Inventor Michael Constant

Michael Constant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130302251
    Abstract: Described herein are apparatus, compositions, systems and methods for occluding vascular structures and vascular malformations with radiopaque hydrogel filaments. The filaments can contain no support members and can be CT and MR compatible. Methods of forming such filaments are also disclosed.
    Type: Application
    Filed: April 17, 2013
    Publication date: November 14, 2013
    Inventors: Michael Constant, Edward Michael Keeley, Joshua Garretson, Gregory M. Cruise
  • Patent number: 8377091
    Abstract: Devices for the occlusion of body cavities, such as the embolization of vascular aneurysms and the like, and methods for making and using such devices. The devices may be comprised of novel expansile materials, novel infrastructure design, or both. The devices provided are very flexible and enable deployment with reduced or no damage to bodily tissues, conduits, cavities, etceteras.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: February 19, 2013
    Assignee: MicroVention, Inc.
    Inventors: Gregory M. Cruise, Michael Constant, Terrance Tran
  • Publication number: 20120289995
    Abstract: Described herein are apparatus, compositions, systems and associated methods to occlude structures and malformations of the vasculature with radiopaque hydrogel filaments with delayed controlled rates of expansion. Further described is a device for implantation in an animal comprising a difunctional, low molecular weight ethylenically unsaturated shapeable macromer; an ethylenically unsaturated monomer; and a radiopaque element, wherein said device contains no support members. Methods of forming such devices are also disclosed.
    Type: Application
    Filed: April 18, 2012
    Publication date: November 15, 2012
    Applicant: MICROVENTION, INC.
    Inventors: Michael Constant, Josh Garretson, Gregory M. Cruise
  • Publication number: 20120283769
    Abstract: Devices for the occlusion of body cavities, such as the embolization of vascular aneurysms and the like, and methods for making and using such devices. The devices may be comprised of novel expansile materials, novel infrastructure design, or both. The devices provided are very flexible and enable deployment with reduced or no damage to bodily tissues, conduits, cavities, etceteras.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Inventors: Gregory M. Cruise, Michael Constant, Terrace Tran
  • Patent number: 7842054
    Abstract: An embolization device for occluding a body cavity includes one or more elongated, expansible, hydrophilic embolizing elements non-releasably carried along the length of an elongated filamentous carrier that is preferably made of a very thin, highly flexible filament or microcoil of nickel/titanium alloy. At least one expansile embolizing element is non-releasably attached to the carrier. A first embodiment includes a plurality of embolizing elements fixed to the carrier at spaced-apart intervals along its length. In second, third and fourth embodiments, an elongate, continuous, coaxial embolizing element is non-releasably fixed to the exterior surface of the carrier, extending along a substantial portion of the length of the carrier proximally from a distal tip, and optionally includes a lumenal reservoir for delivery of therapeutic agents. Exemplary methods for making these devices include skewering and molding the embolizing elements.
    Type: Grant
    Filed: February 8, 2006
    Date of Patent: November 30, 2010
    Assignee: MicroVention, Inc.
    Inventors: George R. Greene, Jr., Gregory M. Cruise, Michael Constant, Brian J. Cox, Terrance Tran
  • Publication number: 20090232869
    Abstract: An embolization device for occluding a body cavity includes one or more elongated, expansible, hydrophilic embolizing elements non-releasably carried along the length of an elongated filamentous carrier that is preferably made of a very thin, highly flexible filament or microcoil of nickel/titanium alloy. At least one expansile embolizing element is non-releasably attached to the carrier. A first embodiment includes a plurality of embolizing elements fixed to the carrier at spaced-apart intervals along its length. In second, third and fourth embodiments, an elongate, continuous, coaxial embolizing element is non-releasably fixed to the exterior surface of the carrier, extending along a substantial portion of the length of the carrier proximally from a distal tip, and optionally includes a lumenal reservoir for delivery of therapeutic agents. Exemplary methods for making these devices include skewering and molding the embolizing elements.
    Type: Application
    Filed: January 29, 2009
    Publication date: September 17, 2009
    Inventors: George R. Greene, JR., Gregory M. Cruise, Michael Constant, Brian J. Cox, Terrance Tran
  • Patent number: 7491214
    Abstract: An embolization device for occluding a body cavity includes one or more elongated, expansible, hydrophilic embolizing elements non-releasably carried along the length of an elongated filamentous carrier that is preferably made of a very thin, highly flexible filament or microcoil of nickel/titanium alloy. At least one expansile embolizing element is non-releasably attached to the carrier. A first embodiment includes a plurality of embolizing elements fixed to the carrier at spaced-apart intervals along its length. In second, third and fourth embodiments, an elongate, continuous, coaxial embolizing element is non-releasably fixed to the exterior surface of the carrier, extending along a substantial portion of the length of the carrier proximally from a distal tip, and optionally includes a lumenal reservoir for delivery of therapeutic agents. Exemplary methods for making these devices include skewering and molding the embolizing elements.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: February 17, 2009
    Assignee: MicroVention, Inc.
    Inventors: George R. Greene, Jr., Gregory M. Cruise, Michael Constant, Brian J. Cox, Terrance Tran
  • Publication number: 20070299464
    Abstract: Devices for the occlusion of body cavities, such as the embolization of vascular aneurysms and the like, and methods for making and using such devices. The devices may be comprised of novel expansile materials, novel infrastructure design, or both. The devices provided are very flexible and enable deployment with reduced or no damage to bodily tissues, conduits, cavities, etceteras.
    Type: Application
    Filed: June 15, 2007
    Publication date: December 27, 2007
    Applicant: MICROVENTION, INC.
    Inventors: Gregory Cruise, Michael Constant, Terrance Tran
  • Publication number: 20060149299
    Abstract: An embolization device for occluding a body cavity includes one or more elongated, expansible, hydrophilic embolizing elements non-releasably carried along the length of an elongated filamentous carrier that is preferably made of a very thin, highly flexible filament or microcoil of nickel/titanium alloy. At least one expansile embolizing element is non-releasably attached to the carrier. A first embodiment includes a plurality of embolizing elements fixed to the carrier at spaced-apart intervals along its length. In second, third and fourth embodiments, an elongate, continuous, coaxial embolizing element is non-releasably fixed to the exterior surface of the carrier, extending along a substantial portion of the length of the carrier proximally from a distal tip, and optionally includes a lumenal reservoir for delivery of therapeutic agents. Exemplary methods for making these devices include skewering and molding the embolizing elements.
    Type: Application
    Filed: February 8, 2006
    Publication date: July 6, 2006
    Applicant: MICROVENTION, INC.
    Inventors: George Greene, Gregory Cruise, Michael Constant, Brian Cox, Terrance Tran
  • Patent number: 7014645
    Abstract: An embolization device for occluding a body cavity includes one or more elongated, expansible, hydrophilic embolizing elements non-releasably carried along the length of an elongated filamentous carrier that is preferably made of a very thin, highly flexible filament or microcoil of nickel/titanium alloy. At least one expansile embolizing element is non-releasably attached to the carrier. A first embodiment includes a plurality of embolizing elements fixed to the carrier at spaced-apart intervals along its length. In second, third and fourth embodiments, an elongate, continuous, coaxial embolizing element is non-releasably fixed to the exterior surface of the carrier, extending along a substantial portion of the length of the carrier proximally from a distal tip, and optionally includes a lumenal reservoir for delivery of therapeutic agents. Exemplary methods for making these devices include skewering and molding the embolizing elements.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: March 21, 2006
    Assignee: Microvention Inc.
    Inventors: George R. Greene, Jr., Gregory M. Cruise, Michael Constant, Brian J. Cox, Terrance Tran
  • Publication number: 20050196426
    Abstract: Hydrogels that expand volumetrically in response to a change in their environment (e.g., a change in pH or temperature) and their methods of manufacture and use. Generally, the hydrogels are prepared by forming a liquid reaction mixture that contains a) monomer(s) and/or polymer(s) at least portion(s) of which are sensitive to environmental changes (e.g., changes in pH or temperature), b) a crosslinker and c) a polymerization initiator. If desired, a porosigen may be incorporated into the liquid reaction mixture to create pores. After the hydrogel is formed, the porosigen is removed to create pores in the hydrogel. The hydrogel may also be treated to cause it to assume a non-expanded volume in which it remains until a change in its environment causes it to expand. These hydrogels may be prepared in many forms including pellets, filaments, and particles.
    Type: Application
    Filed: March 24, 2005
    Publication date: September 8, 2005
    Inventors: Gregory Cruise, Michael Constant
  • Publication number: 20040059370
    Abstract: An embolization device for occluding a body cavity includes one or more elongated, expansible, hydrophilic embolizing elements non-releasably carried along the length of an elongated filamentous carrier that is preferably made of a very thin, highly flexible filament or microcoil of nickel/titanium alloy. At least one expansile embolizing element is non-releasably attached to the carrier. A first embodiment includes a plurality of embolizing elements fixed to the carrier at spaced-apart intervals along its length. In second, third and fourth embodiments, an elongate, continuous, coaxial embolizing element is non-releasably fixed to the exterior surface of the carrier, extending along a substantial portion of the length of the carrier proximally from a distal tip, and optionally includes a lumenal reservoir for delivery of therapeutic agents. Exemplary methods for making these devices include skewering and molding the embolizing elements.
    Type: Application
    Filed: September 24, 2003
    Publication date: March 25, 2004
    Inventors: George R. Greene, Gregory M. Cruise, Michael Constant, Brian J. Cox, Terrance Tran
  • Patent number: 6602261
    Abstract: An embolization device includes one or more expansible, hydrophilic embolizing elements non-releasably carried along the length of a filamentous carrier that is preferably made of a very thin, highly flexible filament or microcoil of nickel/titanium alloy. At least one expansile embolizing element is non-releasably attached to the carrier. A first embodiment includes a plurality of embolizing elements fixed to the carrier at spaced-apart intervals along its length. In a second embodiment, an elongate, continuous, coaxial embolizing element is non-releasably fixed to the exterior surface of the carrier, extending along a substantial portion of the length of the carrier proximally from a distal tip. In either of the embodiments, the embolizing elements may be made of a hydrophilic, macroporous, polymeric, hydrogel foam material.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: August 5, 2003
    Assignee: Microvention, Inc.
    Inventors: George R. Greene, Jr., Gregory M. Cruise, Michael Constant, Brian J. Cox
  • Publication number: 20020177855
    Abstract: An embolization device for occluding a body cavity includes one or more elongated, expansible, hydrophilic embolizing elements non-releasably carried along the length of an elongated filamentous carrier that is preferably made of a very thin, highly flexible filament or microcoil of nickel/titanium alloy. At least one expansile embolizing element is non-releasably attached to the carrier. A first embodiment includes a plurality of embolizing elements fixed to the carrier at spaced-apart intervals along its length. In second, third and fourth embodiments, an elongate, continuous, coaxial embolizing element is non-releasably fixed to the exterior surface of the carrier, extending along a substantial portion of the length of the carrier proximally from a distal tip, and optionally includes a lumenal reservoir for delivery of therapeutic agents. Exemplary methods for making these devices include skewering and molding the embolizing elements.
    Type: Application
    Filed: May 29, 2002
    Publication date: November 28, 2002
    Inventors: George R. Greene, Gregory M. Cruise, Michael Constant, Brian J. Cox, Terrance Tran
  • Publication number: 20020120276
    Abstract: An embolization device includes one or more expansible, hydrophilic embolizing elements non-releasably carried along the length of a filamentous carrier that is preferably made of a very thin, highly flexible filament or microcoil of nickel/titanium alloy. At least one expansile embolizing element is non-releasably attached to the carrier. A first embodiment includes a plurality of embolizing elements fixed to the carrier at spaced-apart intervals along its length. In a second embodiment, an elongate, continuous, coaxial embolizing element is non-releasably i- fixed to the exterior surface of the carrier, extending along a substantial portion of the length of the carrier proximally from a distal tip. In either of the embodiments, the embolizing elements may be made of a hydrophilic, macroporous, polymeric, hydrogel foam material.
    Type: Application
    Filed: May 29, 2001
    Publication date: August 29, 2002
    Applicant: MicroVention, Inc.
    Inventors: George R. Greene, Gregory M. Cruise, Michael Constant, Brian J. Cox