Patents by Inventor Michael D. Bramson

Michael D. Bramson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9836560
    Abstract: Embodiments of the invention simulate the actual shape of a cumulative distribution function (CDF) that describes the energetic sensitivity of an energetic composition. Sensitivity tests and historical data are input into an electronic processor. Response data points are obtained through electronic analysis and a best fit curve is produced through the response points and produced as output in a tangible medium.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: December 5, 2017
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Michael D. Bramson, Tom J. Schilling
  • Patent number: 9817925
    Abstract: Embodiments of the invention disclose the determination of the actual shape of a cumulative distribution function (CDF) for an energetic composition. Sensitivity tests and historical data are configured for input into an electronic processor. An energetic determination tool is configured to determine the actual shape of the CDF. The actual shape of the CDF is output in a tangible medium.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: November 14, 2017
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Michael D. Bramson, Tom J. Schilling
  • Patent number: 7620277
    Abstract: An optical fiber pigtail and methods of fabricating of the same. The invention also relates to a method of self-alignment of a fiber pigtail and a method of attachment of a fiber pigtail to a surrogate chip.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: November 17, 2009
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Paul R. Ashley, Michael D. Bramson
  • Patent number: 7379633
    Abstract: The present invention provides methods for fabricating interferometric fiber optic transceivers having integrated components in which a polymer-on-silicon and beam splitter module replaces the conventional LiNbO3 crystal. The polymer-on-silicon waveguides permit the hybridization of the transceiver and its semi-automated production by semi-conductor processing equipment. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope of the claims.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 27, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Paul R. Ashley, Michael D. Bramson, Geoffrey A. Lindsay
  • Patent number: 7302119
    Abstract: An optical phase modulator comprising a plurality of non-polarizing waveguides having a layered stack including a core between at least one layer of cladding material, wherein the core is constructed of electro-optic material(s), wherein the layers of cladding materials having lower indices of refraction than the core for guided mode, wherein the layer of cladding material having higher indices of refraction than the core for non-guided mode, a substrate dimensioned and configured to integrate a plurality of optical components, wherein the optical components include a plurality of non-polarizing waveguide(s), a waveguide having a non-polarizing non-modulating region and a non-polarizing modulating region, coupler/splitter(s), electrode(s), a waveguide configuration including a first non-polarizing waveguide, a second polarizing waveguide and a third waveguide, and at least two optical fiber pigtails where one is coupled to a second and third waveguide.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: November 27, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael D Bramson, Paul R. Ashley, Geoffrey A. Lindsay
  • Patent number: 7239765
    Abstract: An optical phase modulator comprising a plurality of polarizing waveguides having a layered stack including a core between at least one layer of cladding material, wherein the core is constructed of electro-optic material(s), wherein the layers of cladding materials having lower indices of refraction than the core for guided mode, wherein the layers of cladding materials having higher indices of refraction than the core for non-guided mode, at least one electrode coupled to at least one waveguide including a modulating polarizing region, at least one waveguide having a non-modulating region and a modulating region, a substrate dimensioned and configured to integrate a plurality of optical components, wherein the optical components include a plurality of polarizing waveguide(s), a waveguide having a non-modulating region and a modulating region, coupler/splitter(s), electrode(s), and a waveguide configuration including a first polarizing waveguide, a second polarizing waveguide and a third polarizing waveguide
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: July 3, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael D Bramson, Paul R. Ashley, Geoffrey A. Lindsay
  • Patent number: 7236654
    Abstract: An optical phase modulator comprising a polarizing waveguide having two ends and having a layered stack including a core between at least one layer of cladding material, wherein the core is constructed of electro-optic material(s), wherein the waveguide includes a modulating region and a non-modulating region, wherein the layers of cladding materials having lower indices of refraction than the core for guided mode, wherein the layer of cladding material having higher indices of refraction than the core for non-guided mode, two ports coupled to each end of the waveguide, a light that propagates into the waveguide, a substrate dimensioned and configured to integrate a plurality of optical components, wherein the optical components include a waveguide and ports, and a waveguide configuration including the waveguide, wherein each end of waveguide is coupled to a port for one-way propagation of the light.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: June 26, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael D Bramson, Paul R. Ashley
  • Patent number: 7228013
    Abstract: A polymer phase modulator having a plurality of polarizing waveguides having a layered stack including a core between at least one layer of cladding material, wherein the core is constructed of electro-optic material(s), wherein the layers of cladding materials having lower indices of refraction than the core for guided mode, wherein the layer of cladding material having higher indices of refraction than the core for non-guided mode, at least one waveguide having a non-modulating polarizing region, a substrate dimensioned and configured to integrate a plurality of optical components, wherein the optical components include a plurality of polarizing waveguide(s) and non-polarizing waveguide(s), a waveguide having a polarizing non-modulating region and a non-polarizing modulating region, coupler/splitter(s), electrode(s), and a waveguide configuration including a first polarizing waveguide, a coupler/splitter including a plurality of splitter ports, a second polarizing waveguide and a third polarizing waveguide.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: June 5, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael D Bramson, Paul R. Ashley
  • Patent number: 7228022
    Abstract: An optical transceiver comprising an optical bench including of a waveguide on a substrate, a light source, a system of transceiver module waveguides, a waveguide coupler, a fiber, and a detector.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: June 5, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael D Bramson, Paul R Ashley, Geoffrey A Lindsay
  • Patent number: 7072560
    Abstract: An apparatus and method for stowage of flexible linear objects including optical fibers, hoses, ropes, and electrical wires/cables. The apparatus includes spreader structures dimensioned and configured to stow objects in a figure 8 configuration to reduce potential factures sites, snagging, or kinking of these items during winding and/or unwinding.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: July 4, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Michael D. Bramson
  • Patent number: 5422713
    Abstract: A method for rotationally aligning two bi-refringent waveguides, a single -refringent waveguide and a polarizing fiber or Ti-indifused fiber, and a bi-refringent waveguide and a proton exchange integrated optical chip. The method employs a scanning Michelson interferometer, an ELED light source and an appropriate arrangement of an input polarizer, and output analyzer, necessary coupling lens and a display means for visually observing coherence characteristics of the waveguides during alignment. An Advantest analyzer which contains a scanning Michelson interferometer and display means is used in a preferred embodiment optical arrangement. A set of mathematic relationships applicable to the alignments addressed by the invention is provided. Alignment accuracy as low as .delta..congruent.0.18.degree. is possible.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: June 6, 1995
    Assignee: The United states of America as represented by the Secretary of the Navy
    Inventor: Michael D. Bramson
  • Patent number: 5365338
    Abstract: An error compensated Mach-Zehnder Interferometer wavelength sensor integrd fiber optic chip for scale factor correction of fiber optic gyroscopes. A 90.degree. twisted optical fiber polarizer couples the light from a point in the gyroscope optical fiber circuit where light is found to have traversed the optical sensing coil of the gyroscope in both directions to the input of the fiber optic Mach-Zehnder Interferometer. The light output of the interferometer is converted to electrical signals which are used to servo lock the peak depth of phase modulation of the interferometer and provide a digital output corresponding to the wavelength change sensed by the gyroscope. Temperature and input power variations otherwise adversely affecting the gyroscope performance are thus compensated. Gyro resolution is maintained to within 1.ANG. without temperature stabilization or output conditioning over the entire temperature range of operation.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: November 15, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Michael D. Bramson
  • Patent number: 5321503
    Abstract: An interferometric fiber optic gyroscope employing an integrated, width pshed, optic chip containing annealed proton exchange waveguides and a Mach-Zehnder interferometer for sensing a ramp induced signal from loop closing electronics to achieve a highly improved gyroscope scale factor linearity and dynamic range. An edge light emitting diode (ELED) operating at 1.3.mu. wavelength is employed as the light source in the gyroscope. A decorrelator optical fiber segment is employed between the light source and the chip, and a Lyot depolarizer optical fiber segment is employed between the chip and one side of the fiber optic coil. Also, an intermediate output of the loop closing electronics is shown to have reduced scale factor sensitivity to light source wavelength change.
    Type: Grant
    Filed: June 4, 1990
    Date of Patent: June 14, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Michael D. Bramson