Patents by Inventor Michael D. Cerna

Michael D. Cerna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9135497
    Abstract: Performing sequencing of a polynucleotide. A first image of microparticles that are distributed in a random fashion on a substrate may be received. Each of the microparticles may include a plurality of similar oligonucleotides of the polynucleotide. A second image of the microparticles may be received. A plurality of first subportions of the first image may be determined. Each subportion may include a respective plurality of microparticles distributed in a random fashion. The second image may be analyzed to identify a plurality of second subportions in the second image. Each of the plurality of second subportions may correspond to a respective one of the plurality of first subportions. A plurality of the microparticles may be matched from the first and second images based on said analyzing. At least a portion of the sequence of nucleotides of the polynucleotide may be determined based on said matching.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: September 15, 2015
    Assignee: National Instruments Corporation
    Inventors: Michael D. Cerna, James C. Nagle, Qing Ruan, Darren R. Schmidt, Lothar Wenzel
  • Publication number: 20130196330
    Abstract: Performing sequencing of a polynucleotide. A first image of microparticles that are distributed in a random fashion on a substrate may be received. Each of the microparticles may include a plurality of similar oligonucleotides of the polynucleotide. A second image of the microparticles may be received. A plurality of first subportions of the first image may be determined. Each subportion may include a respective plurality of microparticles distributed in a random fashion. The second image may be analyzed to identify a plurality of second subportions in the second image. Each of the plurality of second subportions may correspond to a respective one of the plurality of first subportions. A plurality of the microparticles may be matched from the first and second images based on said analyzing. At least a portion of the sequence of nucleotides of the polynucleotide may be determined based on said matching.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Inventors: Michael D. Cerna, James C. Nagle, Qing Ruan, Darren R. Schmidt, Lothar Wenzel
  • Patent number: 8364446
    Abstract: System and method for approximating a system. A multi-parameter representation of a family of systems is stored. An embedding of the family into an abstract geometrical continuous space with a metric and defined by the parameters is determined. Coordinates of the space specify values for the parameters of systems of the family. The space includes a grid of points representing respective discrete approximations of the systems. A first point corresponding to a desired instance of a system is determined. The first point's coordinates specify values for the parameters of the instance. The space is sampled using a mapping of a well-distributed point set from a Euclidean space of the parameters to the abstract space. A nearest discrete point to the first point is determined which specifies values for parameters for an optimal discrete approximation of the desired instance, which are useable to implement the discrete approximation of the desired instance.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: January 29, 2013
    Assignee: National Instruments Corporation
    Inventors: James M. Lewis, Michael D. Cerna, Kyle P. Gupton, James C. Nagle, Yong Rao, Subramanian Ramamoorthy, Darren R. Schmidt, Bin Wang, Benjamin R. Weidman, Lothar Wenzel, Naxiong Zhang
  • Publication number: 20110087468
    Abstract: System and method for approximating a system. A multi-parameter representation of a family of systems is stored. An embedding of the family into an abstract geometrical continuous space with a metric and defined by the parameters is determined. Coordinates of the space specify values for the parameters of systems of the family. The space includes a grid of points representing respective discrete approximations of the systems. A first point corresponding to a desired instance of a system is determined. The first point's coordinates specify values for the parameters of the instance. The space is sampled using a mapping of a well-distributed point set from a Euclidean space of the parameters to the abstract space. A nearest discrete point to the first point is determined which specifies values for parameters for an optimal discrete approximation of the desired instance, which are useable to implement the discrete approximation of the desired instance.
    Type: Application
    Filed: October 12, 2009
    Publication date: April 14, 2011
    Inventors: James M. Lewis, Michael D. Cerna, Kyle P. Gupton, James C. Nagle, Yong Rao, Subramanian Ramamoorthy, Darren R. Schmidt, Benjamin R. Weidman, Lothar Wenzel, Naxiong Zhang, Bin Wang