Patents by Inventor Michael D. Eggen

Michael D. Eggen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170209689
    Abstract: A fixation mechanism of an implantable medical device is formed by a plurality of tines fixedly mounted around a perimeter of a distal end of the device. Each tine may be said to include a first segment fixedly attached to the device, a second segment extending from the first segment, and a third segment, to which the second segment extends. When the device is loaded in a lumen of a delivery tool and a rounded free distal end of each tine engages a sidewall that defines the lumen, to hold the tines in a spring-loaded condition, the first segment of each tine, which has a spring-biased pre-formed curvature, becomes relatively straightened, and the third segment of each tine, which is terminated by the free distal end, extends away from the axis of the device at an acute angle in a range from about 45 degrees to about 75 degrees.
    Type: Application
    Filed: January 19, 2017
    Publication date: July 27, 2017
    Inventors: Xin Chen, Ronald A. Drake, Michael D. Eggen, Matthew D. Bonner, Vladimir Grubac, Brian P. Colin, Kenneth C. Gardeski, Kevin R. Seifert
  • Publication number: 20170209688
    Abstract: An implantable medical device includes ventricular and atrial portions, and a flexible leadlet that extends therebetween. An open channel of the atrial portion, formed along a core thereof, is sized to receive the leadlet therein, when the leadlet is folded over on itself. An interventional medical system includes the device and a delivery tool; a tubular sidewall of the tool defines a lumen and has a tether extending therein. A slot formed in the sidewall extends proximally from an open end thereof, coincident with a distal opening of the lumen. When the atrial portion is contained within the lumen, a segment of the leadlet extends alongside the atrial portion; another segment of the leadlet, being folded over on itself, proximal to the atrial portion, has the tether engaged therewith. The slot may allow passage of the leadlet therethrough, when the atrial portion is positioned for deployment through the distal opening.
    Type: Application
    Filed: January 19, 2017
    Publication date: July 27, 2017
    Inventors: Ronald A. Drake, Xin Chen, Michael D. Eggen, Matthew D. Bonner, Vladimir Grubac, Brian P. Colin, Kenneth C. Gardeski, Kevin R. Seifert
  • Patent number: 9526891
    Abstract: An implantable pacemaker system includes a housing having a proximal end and a distal end. A control electronics subassembly defines the housing proximal end, and a battery subassembly defines the housing distal end. A distal fixation member extends from the housing distal end for fixing the housing distal end at an implant site. A pacing extension extends from the housing proximal end and carries a pacing cathode electrode. The pacing extension extends the pacing cathode electrode to a pacing site that is spaced apart from the implant site when the pacemaker is deployed in a patient's body.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: December 27, 2016
    Assignee: Medtronic, Inc.
    Inventors: Michael D Eggen, Vladimir Grubac, Jean M Carver, Ryan Goff, Thomas A Anderson
  • Publication number: 20160361536
    Abstract: Methods and systems of making a medical electrical lead type having a set of tines. A system for implantation of a lead medical electrical lead in contact with heart tissue, comprises an elongated lead body; a set of curved tines mounted to and extending from a distal end of the lead body, the tines having a length (dD) and an effective cross sectional area, and a delivery catheter. The delivery catheter encloses the lead body and has a distal capsule portion enclosing the tines. The tines exerting a spring force against the capsule and provide a stored potential energy. The delivery catheter has an elastic, not stiff and low column strength ejection means for advancing the lead and tines distally from the capsule and fixating the tines within the heart tissue, the controllable and the stored potential energy of the tines together provide a deployment energy. The tines when so fixated in the tissue provide a fixation energy. The deployment energy and the fixation energy of the tines are equivalent.
    Type: Application
    Filed: May 13, 2016
    Publication date: December 15, 2016
    Inventors: Vladimir Grubac, Michael D. Eggen, Kevin R. Seifert
  • Patent number: 9517336
    Abstract: A fixation member of an electrode assembly for an implantable medical device includes a tissue engaging portion extending along a circular path, between a piercing distal tip thereof and a fixed end of the member. The circular path extends around a longitudinal axis of the assembly. A helical structure of the assembly, which includes an electrode surface formed thereon and a piercing distal tip, also extends around the longitudinal axis and is located within a perimeter of the circular path. The tissue engaging portion of the fixation member extends from the distal tip thereof in a direction along the circular path that is the same as that in which the helical structure extends from the distal tip thereof. The electrode assembly may include a pair of the fixation members, wherein each tissue engaging portion may extend approximately one half turn along the circular path.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: December 13, 2016
    Assignee: Medtronic, Inc.
    Inventors: Michael D Eggen, Zhongping Yang, Rick D McVenes, Noelle C. Hurtig, Raymond W Usher
  • Publication number: 20160310723
    Abstract: An implantable pacemaker system includes a housing having a proximal end and a distal end. A control electronics subassembly defines the housing proximal end, and a battery subassembly defines the housing distal end. A distal fixation member extends from the housing distal end for fixing the housing distal end at an implant site. A pacing extension extends from the housing proximal end and carries a pacing cathode electrode. The pacing extension extends the pacing cathode electrode to a pacing site that is spaced apart from the implant site when the pacemaker is deployed in a patient's body.
    Type: Application
    Filed: April 24, 2015
    Publication date: October 27, 2016
    Inventors: Michael D Eggen, Vladimir Grubac, Jean M Carver, Ryan Goff, Thomas A Anderson
  • Patent number: 9420962
    Abstract: A lead coupling device adapted for coupling to a lead and methods for using the coupling devices are provided. The coupling device includes a housing assembly having a proximal opening and a distal opening. The coupling device also has a lead receiving channel that is disposed between the two openings to receive a lead therethrough. Various electronics components may also included in the coupling device that enable operations such as sensing, delivery of electrical energy and wireless communication between the coupling device and an external device.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: August 23, 2016
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, Michael D. Eggen, Joseph A. DuPay
  • Publication number: 20160059003
    Abstract: A relatively compact implantable medical device includes a fixation member formed by a plurality of fingers mounted around a perimeter of a distal end of a housing of the device; each finger is elastically deformable from a relaxed condition to an extended condition, to accommodate delivery of the device to a target implant site, and from the relaxed condition to a compressed condition, to accommodate wedging of the fingers between opposing tissue surfaces at the target implant site, wherein the compressed fingers hold a cardiac pacing electrode of the device in intimate tissue contact for the delivery of pacing stimulation to the site. Each fixation finger is preferably configured to prevent penetration thereof within the tissue when the fingers are compressed and wedged between the opposing tissue surfaces. The pacing electrode may be mounted on a pacing extension, which extends distally from the distal end of the device housing.
    Type: Application
    Filed: October 20, 2014
    Publication date: March 3, 2016
    Inventors: Michael D. Eggen, James K. Carney, Matthew D. Bonner, Vladimir Grubac, Douglas S. Hine, Thomas D. Brostrom, John L. Sommer
  • Publication number: 20160015985
    Abstract: A medical device system including at least a first implantable medical device and a second implantable medical device is configured to establish by a control module of the first implantable medical device whether the second implantable medical device is present in a patient and self-configure an operating mode of the control module in response to establishing that the second implantable medical device is present.
    Type: Application
    Filed: March 11, 2015
    Publication date: January 21, 2016
    Inventors: Yong K. Cho, Wade M. Demmer, Michael D. Eggen, Kathryn Hilpisch, Michael F. Hess, Todd J. Sheldon, Saul E. Greenhut
  • Publication number: 20150320996
    Abstract: Method and systems of determining adequacy of fixation of a medical lead type having a fixation helix are disclosed. The lead of the medical lead type is placed at a desired location within a patient's body and the fixation helix is screwed into tissue at that location. One or more parameters, associated with the lead, are measured at the location. Based upon the measured one or more parameters, determining a number of turns that the helix is embedded into the tissue at the location.
    Type: Application
    Filed: April 24, 2015
    Publication date: November 12, 2015
    Inventors: Michael D. Eggen, Tarek D. Haddad, Paul A. Iaizzo, Zhongping Yang
  • Publication number: 20150151117
    Abstract: A fixation member of an electrode assembly for an implantable medical device includes a tissue engaging portion extending along a circular path, between a piercing distal tip thereof and a fixed end of the member. The circular path extends around a longitudinal axis of the assembly. A helical structure of the assembly, which includes an electrode surface formed thereon and a piercing distal tip, also extends around the longitudinal axis and is located within a perimeter of the circular path. The tissue engaging portion of the fixation member extends from the distal tip thereof in a direction along the circular path that is the same as that in which the helical structure extends from the distal tip thereof. The electrode assembly may include a pair of the fixation members, wherein each tissue engaging portion may extend approximately one half turn along the circular path.
    Type: Application
    Filed: February 2, 2015
    Publication date: June 4, 2015
    Inventors: Michael D. Eggen, Zhongping Yang, Rick D. McVenes, Noelle C. Neafus, Raymond W. Usher
  • Patent number: 8948883
    Abstract: A fixation member of an electrode assembly for an implantable medical device includes a tissue engaging portion extending along a circular path, between a piercing distal tip thereof and a fixed end of the member. The circular path extends around a longitudinal axis of the assembly. A helical structure of the assembly, which includes an electrode surface formed thereon and a piercing distal tip, also extends around the longitudinal axis and is located within a perimeter of the circular path. The tissue engaging portion of the fixation member extends from the distal tip thereof in a direction along the circular path that is the same as that in which the helical structure extends from the distal tip thereof. The electrode assembly may include a pair of the fixation members, wherein each tissue engaging portion may extend approximately one half turn along the circular path.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: February 3, 2015
    Assignee: Medtronic, Inc.
    Inventors: Michael D Eggen, Zhongping Yang, Rick D McVenes, Noelle C Hurtig, Raymond W Usher
  • Publication number: 20140370490
    Abstract: An isolated heart or heart-lung preparation in which essentially normal pumping activity of all four chambers of the heart is preserved, allowing for the use of the preparation in conjunction with investigations of electrode leads, catheters, ablation methods, cardiac implants and other medical devices intended to be used in or on a beating heart. The system can be designed to be used within a Magnetic Resonance Imaging (MRI) unit or a X-ray computed tomography (CT) scanner. The preparation may also be employed to investigate heart and lung functions, in the presence or absence of such medical devices. In order to allow comparative imaging visualizations of either or simultaneously the heart and/or lung structures and devices located within the chambers of the heart or vessels or bronchi within the lungs, a clear perfusate such as a modified Krebs buffer solution with oxygenation is circulated through all four chambers of the heart and thus the coronary and/or pulmonary vasculatures.
    Type: Application
    Filed: April 14, 2014
    Publication date: December 18, 2014
    Inventors: Paul A Iaizzo, Timothy G Laske, Michael D Eggen, Ryan P Goff, Brian Howard
  • Publication number: 20140324145
    Abstract: A fixation member of an electrode assembly for an implantable medical device includes a tissue engaging portion extending along a circular path, between a piercing distal tip thereof and a fixed end of the member. The circular path extends around a longitudinal axis of the assembly. A helical structure of the assembly, which includes an electrode surface formed thereon and a piercing distal tip, also extends around the longitudinal axis and is located within a perimeter of the circular path. The tissue engaging portion of the fixation member extends from the distal tip thereof in a direction along the circular path that is the same as that in which the helical structure extends from the distal tip thereof. The electrode assembly may include a pair of the fixation members, wherein each tissue engaging portion may extend approximately one half turn along the circular path.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 30, 2014
    Applicant: Medtronic, Inc.
    Inventors: Michael D. Eggen, Zhongping Yang, Rick D. McVenes, Noelle C. Hurtig, Raymond W. Usher
  • Patent number: 8630719
    Abstract: This disclosure describes implantable medical leads that include a lead body and an electrode. A width of the electrode as measured along a longitudinal direction of the lead varies about the perimeter of the lead. The uneven width of the electrode may bias a stimulation field in a particular direction, e.g., a radial or transverse direction relative to the longitudinal axis of the lead. Electrodes with an uneven width may be useful for controlling the direction of propagation of the stimulation field in order to, for example, avoid phrenic nerve stimulation during LV pacing or neck muscle stimulation during vagal neurostimulation.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: January 14, 2014
    Assignee: Medtronic, Inc.
    Inventors: Michael D Eggen, John L Sommer, Michael Ebert, David W Bourn, Gabriela C Molnar
  • Patent number: 8538523
    Abstract: A medical system comprises a plurality of electrodes; at least one sensor configured to output at least one signal based on at least one physiological parameter of a patient; and a processor. The processor is configured to control delivery of stimulation to the patient using a plurality of electrode configurations. Each of the electrode configurations comprises at least one of the plurality of electrodes. For each of the electrode configurations, the processor is configured to determine a first response of target tissue to the stimulation based on the signals, and a second response of non-target tissue to the stimulation based on the signals. The processor is also configured to select at least one of the electrode configurations for delivery of stimulation to the patient based on the first and second responses for the electrode configurations. As examples, the target tissue may be a left ventricle or vagus nerve.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 17, 2013
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, David Wayne Bourn, Mark T. Marshall, Michael D. Eggen, Gabriela C. Miyazawa
  • Publication number: 20130046369
    Abstract: This disclosure describes implantable medical leads that include a lead body and an electrode. A width of the electrode as measured along a longitudinal direction of the lead varies about the perimeter of the lead. The uneven width of the electrode may bias a stimulation field in a particular direction, e.g., a radial or transverse direction relative to the longitudinal axis of the lead. Electrodes with an uneven width may be useful for controlling the direction of propagation of the stimulation field in order to, for example, avoid phrenic nerve stimulation during LV pacing or neck muscle stimulation during vagal neurostimulation.
    Type: Application
    Filed: October 22, 2012
    Publication date: February 21, 2013
    Inventors: Michael D. Eggen, John L. Sommer, Michael Ebert, David W. Bourn, Gabriela C. Molnar
  • Publication number: 20130006332
    Abstract: A medical system comprises a plurality of electrodes; at least one sensor configured to output at least one signal based on at least one physiological parameter of a patient; and a processor. The processor is configured to control delivery of stimulation to the patient using a plurality of electrode configurations. Each of the electrode configurations comprises at least one of the plurality of electrodes. For each of the electrode configurations, the processor is configured to determine a first response of target tissue to the stimulation based on the signals, and a second response of non-target tissue to the stimulation based on the signals. The processor is also configured to select at least one of the electrode configurations for delivery of stimulation to the patient based on the first and second responses for the electrode configurations. As examples, the target tissue may be a left ventricle or vagus nerve.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Applicant: Medtronics, Inc.
    Inventors: John L. Sommer, David Wayne Bourn, Mark T. Marshall, Michael D. Eggen, Gabriela C. Miyazawa
  • Patent number: 8326418
    Abstract: A medical system comprises a plurality of electrodes; at least one sensor configured to output at least one signal based on at least one physiological parameter of a patient; and a processor. The processor is configured to control delivery of stimulation to the patient using a plurality of electrode configurations. Each of the electrode configurations comprises at least one of the plurality of electrodes. For each of the electrode configurations, the processor is configured to determine a first response of target tissue to the stimulation based on the signals, and a second response of non-target tissue to the stimulation based on the signals. The processor is also configured to select at least one of the electrode configurations for delivery of stimulation to the patient based on the first and second responses for the electrode configurations. As examples, the target tissue may be a left ventricle or vagus nerve.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: December 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, David Wayne Bourn, Mark T. Marshall, Michael D. Eggen, Gabriela C. Miyazawa
  • Patent number: 8295943
    Abstract: This disclosure describes implantable medical leads that include a lead body and an electrode. A width of the electrode as measured along a longitudinal direction of the lead varies about the perimeter of the lead. The uneven width of the electrode may bias a stimulation field in a particular direction, e.g., a radial or transverse direction relative to the longitudinal axis of the lead. Electrodes with an uneven width may be useful for controlling the direction of propagation of the stimulation field in order to, for example, avoid phrenic nerve stimulation during LV pacing or neck muscle stimulation during vagal neurostimulation.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: October 23, 2012
    Assignee: Medtronic, Inc.
    Inventors: Michael D. Eggen, John L. Sommer, Michael Ebert, David Wayne Bourn, Gabriela C. Miyazawa