Patents by Inventor Michael D. HODGE

Michael D. HODGE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240158368
    Abstract: Pyrrolidine main protease inhibitors are described that are effective as antiviral compounds.
    Type: Application
    Filed: October 12, 2023
    Publication date: May 16, 2024
    Applicant: AbbVie Inc.
    Inventors: David A. Degoey, Michael R. Schrimpf, David J. Hardee, Jacob Ludwig, Eric R. Miller, Timothy R. Hodges, Alberto Munoz, Sarah J. Perlmutter, Huan-Qiu X. Li, Alvin Jang, Elizabeth L. Noey, Gregory A. Gfesser, Edgars Jecs, Robert G. Schmidt, Justin D. Dietrich, Xenia B. Searle, Boguslaw P. Nocek, Andrew Bogdan
  • Patent number: 11838005
    Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: December 5, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ya Shen, Michael D. Hodge
  • Publication number: 20230344399
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: June 27, 2023
    Publication date: October 26, 2023
    Inventors: Ramakrishna VETURY, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 11728781
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: August 15, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Publication number: 20230155571
    Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
    Type: Application
    Filed: January 20, 2023
    Publication date: May 18, 2023
    Inventors: YA SHEN, MICHAEL D. HODGE
  • Patent number: 11646718
    Abstract: An RF filter system including a plurality of BAW resonators arranged in a circuit, the circuit including a serial configuration of resonators and a parallel shunt configuration of resonators, the circuit having a circuit response corresponding to the serial configuration and the parallel configuration of the plurality of bulk acoustic wave resonators including a transmission loss from a pass band having a bandwidth from 5.855 GHz to 5.925 GHz. Resonators include a support member with a multilayer reflector structure; a first electrode including tungsten; a piezoelectric film including aluminum scandium nitride; a second electrode including tungsten; and a passivation layer including silicon nitride. At least one resonator includes at least a portion of the first electrode located within a cavity region defined by a surface of the support member.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: May 9, 2023
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Michael D. Hodge, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury, David M. Aichele
  • Patent number: 11646717
    Abstract: An RF filter system including a plurality of BAW resonators arranged in a circuit, the circuit including a serial configuration of resonators and a parallel shunt configuration of resonators, the circuit having a circuit response corresponding to the serial configuration and the parallel configuration of the plurality of bulk acoustic wave resonators including a transmission loss from a pass band having a bandwidth from 5.170 GHz to 5.330 GHz. Resonators include a support member with a multilayer reflector structure; a first electrode including tungsten; a piezoelectric film including aluminum scandium nitride; a second electrode including tungsten; and a passivation layer including silicon nitride. At least one resonator includes at least a portion of the first electrode located within a cavity region defined by a surface of the support member.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: May 9, 2023
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Michael D. Hodge, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury, David M. Aichele
  • Patent number: 11581872
    Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: February 14, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ya Shen, Michael D. Hodge
  • Patent number: 11563412
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: January 24, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 11558023
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: January 17, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Dae Ho Kim, Mary Winters, Jeffrey B. Shealy
  • Publication number: 20220393667
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: August 15, 2022
    Publication date: December 8, 2022
    Inventors: Jeffrey B. SHEALY, Michael D. HODGE, Rohan W. HOULDEN, Mary WINTERS, Ramakrishna VETURY, Ya SHEN, David M. AICHELE
  • Publication number: 20220393668
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: Jeffrey B. SHEALY, Michael D. HODGE, Rohan W. HOULDEN, Mary WINTERS, Ramakrishna VETURY, Ya SHEN, David M. AICHELE
  • Publication number: 20220368308
    Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 17, 2022
    Inventors: Ya Shen, Michael D. Hodge
  • Patent number: 11456723
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: September 27, 2022
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Michael D. Hodge, Rohan W. Houlden, Mary Winters, Ramakrishna Vetury, Ya Shen, David M. Aichele
  • Patent number: 11456724
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: September 27, 2022
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Michael D. Hodge, Rohan W. Houlden, Mary Winters, Ramakrishna Vetury, Ya Shen, David M. Aichele
  • Patent number: 11349453
    Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: May 31, 2022
    Assignee: Akoustis, Inc.
    Inventors: Ya Shen, Michael D. Hodge
  • Publication number: 20220166408
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: February 8, 2022
    Publication date: May 26, 2022
    Inventors: Jeffrey B. SHEALY, Michael D. HODGE, Rohan W. HOULDEN, Mary WINTERS, Ramakrishna VETURY, Ya SHEN, David M. AICHELE
  • Publication number: 20220116023
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Inventors: Jeffrey B. SHEALY, Michael D. HODGE, Rohan W. HOULDEN, Mary WINTERS, Ramakrishna VETURY, Ya SHEN, David M. AICHELE
  • Publication number: 20220021364
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: September 30, 2021
    Publication date: January 20, 2022
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Patent number: 11165404
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: November 2, 2021
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy