Patents by Inventor Michael D. Hyatt

Michael D. Hyatt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10217706
    Abstract: Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: February 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, Kyle Armstrong, Michael D. Hyatt, Michael Dean Van Patten, David A. Kewley, Ming-Chuan Yang
  • Publication number: 20170352616
    Abstract: Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
    Type: Application
    Filed: August 24, 2017
    Publication date: December 7, 2017
    Applicant: Micron Technology, Inc.
    Inventors: Vishal Sipani, Kyle Armstrong, Michael D. Hyatt, Michael Dean Van Patten, David A. Kewley, Ming-Chuan Yang
  • Patent number: 9780029
    Abstract: Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: October 3, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, Kyle Armstrong, Michael D. Hyatt, Michael Dean Van Patten, David A. Kewley, Ming-Chuan Yang
  • Patent number: 9358753
    Abstract: Substrates and methods of forming a pattern on a substrate. The pattern includes a repeating pattern region and a pattern-interrupting region adjacent to the repeating pattern region. A mask is formed on the substrate, with the mask including the repeating pattern region and the pattern-interrupting region and which are formed using two separate masking steps. The mask is used in forming the pattern into underlying substrate material on which the mask is received. Substrates comprising masks are also disclosed.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: June 7, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, David A. Kewley, Kyle Armstrong, Michael Dean Van Patten, Michael D. Hyatt
  • Patent number: 9330914
    Abstract: A method including forming a line pattern in a substrate includes using a plurality of longitudinally spaced projecting features formed along respective guide lines as a template in forming a plurality of directed self-assembled (DSA) lines that individually comprise at least one of (a): the spaced projecting features and DSA material longitudinally there-between, and (b): are laterally between and laterally spaced from immediately adjacent of the guide lines. Substrate material elevationally inward of and laterally between the DSA lines may be processed using the DSA lines as a mask.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: May 3, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Scott L. Light, Vishal Sipani, Michael D. Hyatt
  • Publication number: 20150321447
    Abstract: Substrates and methods of forming a pattern on a substrate. The pattern includes a repeating pattern region and a pattern-interrupting region adjacent to the repeating pattern region. A mask is formed on the substrate, with the mask including the repeating pattern region and the pattern-interrupting region and which are formed using two separate masking steps. The mask is used in forming the pattern into underlying substrate material on which the mask is received. Substrates comprising masks are also disclosed.
    Type: Application
    Filed: July 1, 2015
    Publication date: November 12, 2015
    Inventors: Vishal Sipani, David A. Kewley, Kyle Armstrong, Michael Dean Van Patten, Michael D. Hyatt
  • Publication number: 20150235938
    Abstract: Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
    Type: Application
    Filed: April 29, 2015
    Publication date: August 20, 2015
    Inventors: Vishal Sipani, Kyle Armstrong, Michael D. Hyatt, Michael Dean Van Patten, David A. Kewley, Ming-Chuan Yang
  • Patent number: 9102121
    Abstract: Substrates and methods of forming a pattern on a substrate. The pattern includes a repeating pattern region and a pattern-interrupting region adjacent to the repeating pattern region. A mask is formed on the substrate, with the mask including the repeating pattern region and the pattern-interrupting region and which are formed using two separate masking steps. The mask is used in forming the pattern into underlying substrate material on which the mask is received. Substrates comprising masks are also disclosed.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: August 11, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, David A. Kewley, Kyle Armstrong, Michael Dean Van Patten, Michael D. Hyatt
  • Patent number: 9048292
    Abstract: Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: June 2, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, Kyle Armstrong, Michael D. Hyatt, Michael Dean Van Patten, David A. Kewley, Ming-Chuan Yang
  • Publication number: 20150099362
    Abstract: A method including forming a line pattern in a substrate includes using a plurality of longitudinally spaced projecting features formed along respective guide lines as a template in forming a plurality of directed self-assembled (DSA) lines that individually comprise at least one of (a): the spaced projecting features and DSA material longitudinally there-between, and (b): are laterally between and laterally spaced from immediately adjacent of the guide lines. Substrate material elevationally inward of and laterally between the DSA lines may be processed using the DSA lines as a mask.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 9, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Scott L. Light, Vishal Sipani, Michael D. Hyatt
  • Patent number: 8969214
    Abstract: A method of forming a pattern on a substrate includes forming spaced first features derived from a first lithographic patterning step. Sidewall spacers are formed on opposing sides of the first features. After forming the sidewall spacers, spaced second features derived from a second lithographic patterning step are formed. At least some of individual of the second features are laterally between and laterally spaced from immediately adjacent of the first features in at least one straight-line vertical cross-section that passes through the first and second features. After the second lithographic patterning step, all of only some of the sidewall spacers in said at least one cross-section is removed.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: March 3, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Scott L. Light, Kyle Armstrong, Michael D. Hyatt, Vishal Sipani
  • Publication number: 20150015860
    Abstract: A method of mitigating asymmetric lens heating in photolithographically patterning a photo-imageable material using a reticle includes determining where first hot spot locations are expected to occur on a lens when using a reticle to pattern a photo-imageable material. The reticle is then fabricated to include non-printing features within a non-printing region of the reticle which generate additional hot spot locations on the lens when using the reticle to pattern the photo-imageable material. Other implementations are contemplated, including reticles which may be independent of method of use or fabrication.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: Scott L. Light, Dan Millward, Yuan He, Kaveri Jain, Lijing Gou, Zishu Zhang, Anton J. deVilliers, Michael D. Hyatt, Jianming Zhou
  • Publication number: 20140342563
    Abstract: A method of forming a pattern on a substrate includes forming spaced first features derived from a first lithographic patterning step. Sidewall spacers are formed on opposing sides of the first features. After forming the sidewall spacers, spaced second features derived from a second lithographic patterning step are formed. At least some of individual of the second features are laterally between and laterally spaced from immediately adjacent of the first features in at least one straight-line vertical cross-section that passes through the first and second features. After the second lithographic patterning step, all of only some of the sidewall spacers in said at least one cross-section is removed.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Scott L. Light, Kyle Armstrong, Michael D. Hyatt, Vishal Sipani
  • Patent number: 8728721
    Abstract: A method of processing a substrate includes forming first photoresist on a substrate. A portion of the first photoresist is selectively exposed to actinic energy and then the first photoresist is negative tone developed to remove an unexposed portion of the first photoresist. Second photoresist is formed on the substrate over the developed first photoresist. A portion of the second photoresist is selectively exposed to actinic energy and then the second photoresist is negative tone developed to remove an unexposed portion of the second photoresist and form a pattern on the substrate which comprises the developed first photoresist and the developed second photoresist. Other implementations are disclosed.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: May 20, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Scott L. Light, Kaveri Jain, Zishu Zhang, Anton J deVilliers, Dan Millward, Jianming Zhou, Michael D. Hyatt
  • Publication number: 20140117529
    Abstract: Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Vishal Sipani, Kyle Armstrong, Michael D. Hyatt, Michael Dean Van Patten, David A. Kewley, Ming-Chuan Yang
  • Publication number: 20130302981
    Abstract: Some embodiments include methods of forming patterns. A semiconductor substrate is formed to comprise an electrically insulative material over a set of electrically conductive structures. An interconnect region is defined across the electrically conductive structures, and regions on opposing sides of the interconnect region are defined as secondary regions. A two-dimensional array of features is formed over the electrically insulative material. The two-dimensional array extends across the interconnect region and across the secondary regions. A pattern of the two-dimensional array is transferred through the electrically insulative material of the interconnect region to form contact openings that extend through the electrically insulative material and to the electrically conductive structures, and no portions of the two-dimensional array of the secondary regions is transferred into the electrically insulative material.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventors: Dan Millward, Kaveri Jain, Zishu Zhang, Lijing Gou, Anton J. deVilliers, Jianming Zhou, Yuan He, Michael D. Hyatt, Scott L. Light
  • Publication number: 20130295335
    Abstract: Substrates and methods of forming a pattern on a substrate. The pattern includes a repeating pattern region and a pattern-interrupting region adjacent to the repeating pattern region. A mask is formed on the substrate, with the mask including the repeating pattern region and the pattern-interrupting region and which are formed using two separate masking steps. The mask is used in forming the pattern into underlying substrate material on which the mask is received. Substrates comprising masks are also disclosed.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Vishal Sipani, David A. Kewley, Kyle Armstrong, Michael Dean Van Patten, Michael D. Hyatt
  • Publication number: 20130040245
    Abstract: A method of processing a substrate includes forming first photoresist on a substrate. A portion of the first photoresist is selectively exposed to actinic energy and then the first photoresist is negative tone developed to remove an unexposed portion of the first photoresist. Second photoresist is formed on the substrate over the developed first photoresist. A portion of the second photoresist is selectively exposed to actinic energy and then the second photoresist is negative tone developed to remove an unexposed portion of the second photoresist and form a pattern on the substrate which comprises the developed first photoresist and the developed second photoresist. Other implementations are disclosed.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 14, 2013
    Inventors: Scott L. Light, Kaveri Jain, Zishu Zhang, Anton J. de Villiers, Dan Millward, Jianming Zhou, Michael D. Hyatt