Patents by Inventor Michael D. Irwin
Michael D. Irwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220187695Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.Type: ApplicationFiled: March 7, 2022Publication date: June 16, 2022Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
-
Patent number: 11300870Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.Type: GrantFiled: April 27, 2020Date of Patent: April 12, 2022Assignee: CUBICPV INC.Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
-
Publication number: 20220033658Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes. The active layer may have perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.Type: ApplicationFiled: October 20, 2021Publication date: February 3, 2022Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas, Kamil Mielczarek
-
Patent number: 11180660Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes. The active layer may have perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.Type: GrantFiled: June 10, 2019Date of Patent: November 23, 2021Assignee: CUBIC PEROVSKITE LLCInventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas, Kamil Mielczarek
-
Publication number: 20210280801Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes, the active layer having perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.Type: ApplicationFiled: May 20, 2021Publication date: September 9, 2021Inventors: Michael D. Irwin, Vivek V. Dhas
-
Patent number: 11024814Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes, the active layer having perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.Type: GrantFiled: May 1, 2018Date of Patent: June 1, 2021Assignee: Hunt Perovskite Technologies, L.L.C.Inventors: Michael D. Irwin, Vivek V. Dhas
-
Publication number: 20210139710Abstract: A composition for use in a preparation of a nickel oxide layer that includes Ni(NO3)2.nH2O, wherein n is 0, 4, 6 or 9, at least one metal acetate, and a solvent combination that includes a diol, an alcohol amine, and water.Type: ApplicationFiled: December 29, 2020Publication date: May 13, 2021Inventors: Michael D. Irwin, Erin Sanehira
-
Patent number: 10916712Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes, the active layer having perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.Type: GrantFiled: August 30, 2018Date of Patent: February 9, 2021Assignee: HEE Solar, L.L.C.Inventors: Michael D. Irwin, Jerred A. Chute
-
Patent number: 10907050Abstract: A composition for use in a preparation of a nickel oxide layer that includes Ni(NO3)2.nH2O, wherein n is 0, 4, 6 or 9, at least one metal acetate, and a solvent combination that includes a diol, an alcohol amine, and water.Type: GrantFiled: September 20, 2019Date of Patent: February 2, 2021Assignee: HEE Solar, L.L.C.Inventors: Michael D. Irwin, Erin Sanehira
-
Publication number: 20210021234Abstract: The performance of photosensitive devices over time may be tested by configuring a photosensitive device test system that includes a light source plate that exposes photosensitive devices within a container to a specified light intensity. The light intensity may be adjusted by a programmable power source according to one or more thresholds. A test may last for a set duration with performance measurements being taken at predetermined intervals throughout the duration. Feedback from the photosensitive device test system may be recorded to determine whether to increase light intensity, to stop testing, to continue testing, and whether one or more environmental conditions should be altered. Measurements may be sent to a client for analysis and display to a user.Type: ApplicationFiled: October 5, 2020Publication date: January 21, 2021Inventors: Michael D. Irwin, Jerome Lovelace, Kamil Mielczarek
-
Publication number: 20200358436Abstract: A method for preparing photoactive perovskite materials. The method comprises the step of preparing a germanium halide precursor ink. Preparing a germanium halide precursor ink comprises the steps of: introducing a germanium halide into a vessel, introducing a first solvent to the vessel, and contacting the germanium halide with the first solvent to dissolve the germanium halide. The method further comprises depositing the germanium halide precursor ink onto a substrate, drying the germanium halide precursor ink to form a thin film, annealing the thin film, and rinsing the thin film with a second solvent and a salt.Type: ApplicationFiled: July 27, 2020Publication date: November 12, 2020Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas
-
Publication number: 20200332408Abstract: A method for solvent-free perovskite deposition. The method comprises loading a lead target and one or more samples adhered to a substrate holder into a deposition chamber, pumping down to a high vacuum pressure, and backfilling the deposition chamber with the vapor of a salt precursor to form a perovskite material.Type: ApplicationFiled: April 17, 2020Publication date: October 22, 2020Inventors: Michael D. Irwin, Marissa Higgins, David W. Miller
-
Patent number: 10797641Abstract: The performance of photosensitive devices over time may be tested by configuring a photosensitive device test system that includes a light source plate that exposes photosensitive devices within a container to a specified light intensity. The light intensity may be adjusted by a programmable power source according to one or more thresholds. A test may last for a set duration with performance measurements being taken at predetermined intervals throughout the duration. Feedback from the photosensitive device test system may be recorded to determine whether to increase light intensity, to stop testing, to continue testing, and whether one or more environmental conditions should be altered. Measurements may be sent to a client for analysis and display to a user.Type: GrantFiled: May 25, 2018Date of Patent: October 6, 2020Assignee: Hunt Perovskite Technologies, LLCInventors: Michael D. Irwin, Jerome Lovelace, Kamil Mielczarek
-
Publication number: 20200257190Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.Type: ApplicationFiled: April 27, 2020Publication date: August 13, 2020Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
-
Patent number: 10741779Abstract: A method for preparing photoactive perovskite materials. The method comprises the step of preparing a lead halide precursor ink. Preparing a lead halide precursor ink comprises the steps of: introducing a lead halide into a vessel, introducing a first solvent to the vessel, and contacting the lead halide with the first solvent to dissolve the lead halide. The method further comprises depositing the lead halide precursor ink onto a substrate, drying the lead halide precursor ink to form a thin film, annealing the thin film, and rinsing the thin film with a second solvent and a salt.Type: GrantFiled: June 4, 2018Date of Patent: August 11, 2020Assignee: Hunt Perovskite Technologies, L.L.C.Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas
-
Publication number: 20200157355Abstract: A composition for use in a preparation of a nickel oxide layer that includes Ni(NO3)2.nH2O, wherein n is 0, 4, 6 or 9, at least one metal acetate, and a solvent combination that includes a diol, an alcohol amine, and water.Type: ApplicationFiled: September 20, 2019Publication date: May 21, 2020Inventors: Michael D. Irwin, Erin Sanehira
-
Publication number: 20200161127Abstract: A perovskite material that has a perovskite crystal lattice having a formula of CxMyXz, where x, y, and z, are real numbers, and 1,4-diammonium butane cation cations disposed within or at a surface of the perovskite crystal lattice. C comprises one or more cations selected from the group consisting of Group 1 metals, Group 2 metals, ammonium, formamidinium, guanidinium, and ethene tetramine. M comprises one or more metals each selected from the group consisting of Be, Mg, Ca, Sr, Ba, Fe, Cd, Co, Ni, Cu, Ag, Au, Hg, Sn, Ge, Ga, Pb, In, Tl, Sb, Bi, Ti, Zn, Cd, Hg, and Zr and combinations thereof. X comprises one or more anions each selected from the group consisting of halides, sulfides, selenides, and combinations thereof.Type: ApplicationFiled: October 28, 2019Publication date: May 21, 2020Inventors: Michael D. Irwin, Michael Holland, Nicholas Anderson
-
Publication number: 20200157125Abstract: A perovskite material that has a perovskite crystal lattice having a formula of CxMyXz, where x, y, and z, are real numbers. Bulky organic cations reside near a surface or a grain boundary of the perovskite crystal lattice. C includes one or more cations selected from the group consisting of Group 1 metals, Group 2 metals, methylammonium, formamidinium, guanidinium, and ethene tetramine. M includes one or more metals each selected from the group consisting of Be, Mg, Ca, Sr, Ba, Fe, Cd, Co, Ni, Cu, Ag, Au, Hg, Sn, Ge, Ga, Pb, In, Tl, Sb, Bi, Ti, Zn, Cd, Hg, and Zr and combinations thereof. X includes one or more anions each selected from the group consisting of halides, sulfides, selenides, and combinations thereof.Type: ApplicationFiled: October 28, 2019Publication date: May 21, 2020Inventors: Michael D. Irwin, Michael Holland, Nicholas Anderson
-
Patent number: 10642147Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.Type: GrantFiled: January 29, 2018Date of Patent: May 5, 2020Assignee: Hunt Perovskite Technologies LLCInventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
-
Patent number: 10608190Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes, the active layer having perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.Type: GrantFiled: April 30, 2018Date of Patent: March 31, 2020Assignee: Hee Solar, L.L.C.Inventors: Michael D. Irwin, Vivek V. Dhas