Patents by Inventor Michael D. Jensen

Michael D. Jensen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210393165
    Abstract: An abdominal measurement apparatus includes multiple belts configured to be lengthened and shortened around respective portions of an abdomen, multiple tensioning mechanisms respectively coupled to the multiple belts and configured to maintain substantially constant tensions in the multiple belts around the respective portions of the abdomen, and multiple measurement devices respectively coupled to the multiple belts and configured to provide indications of lengths of the multiple belts while the multiple belts are maintained in tension around the respective portions of the abdomen.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 23, 2021
    Applicant: Mayo Foundation for Medical Education and Research
    Inventors: Michael D. Jensen, Teresa B. Jensen
  • Publication number: 20210369790
    Abstract: This document provides methods and materials for identifying and treating mammals responsive to obesity treatments. For example, methods and materials for assessing a mammal's gut microbiota (e.g., a human's gut microbiota) to identify that mammal (e.g., human) as being responsive to an obesity treatment are provided. Methods and materials for treating obesity by assessing a mammal's gut microbiota (e.g., a human's gut microbiota) to identify that mammal (e.g., human) as being responsive to an obesity treatment and proceeding with an obesity treatment also are provided.
    Type: Application
    Filed: September 16, 2018
    Publication date: December 2, 2021
    Applicant: Mayo Foundation for Medical Education and Research
    Inventors: Michael D. Jensen, Vandana Nehra, Purna C. Kashyap
  • Publication number: 20210230318
    Abstract: Disclosed are support-activators and catalyst compositions comprising the support-activators for polymerizing olefins in which the support-activator includes clay heteroadduct, prepare from a colloidal phyllosilicate such as a colloidal smectite clay, which is chemically-modified with a heterocoagulation agent. By limiting the amount of heterocoagulation reagent relative to the colloidal smectite clay as described herein, the smectite heteroadduct support-activator is a porous and amorphous solid which can be readily isolated from the resulting slurry by a conventional filtration process, and which can activate metallocenes and related catalysts toward olefin polymerization. Related compositions and processes are disclosed.
    Type: Application
    Filed: January 27, 2020
    Publication date: July 29, 2021
    Applicant: Formosa Plastics Corporation, U.S.A.
    Inventors: Michael D. Jensen, Kevin Chung, Daoyong Wang, Wei-Chun Shih, Guangxue Xu, Chih-Jian Chen, Charles R. Johnson, II, Mary Lou Cowen
  • Patent number: 10982023
    Abstract: Catalyst support-activator for olefin polymerization catalysts, and processes for making, the support-activator comprising an intercalated, modified and calcined smectite clay comprising (a) pillars comprising aluminum and optionally: (i) at least one rare earth or lanthanide group metal; or (ii) at least one rare earth or lanthanide group metal and gallium; and (b) at least one ion-exchanged metal ion selected from the group consisting of aluminum, barium, beryllium, calcium, cerium, cesium, copper, chromium, gadolinium, gallium, germanium, hafnium, holmium, iron (II and III), lanthanum, lithium, magnesium, manganese, neodymium, potassium, praseodymium, rubidium, samarium, silver, selenium, sodium, strontium, tellurium, terbium, thallium, thorium, tin, titanium, uranium, ytterbium, yttrium, zinc and zirconium. The pillared clay exhibits a basal d100 spacing of: (A) 9 to 18 angstroms; or (B) equal to or greater than about 18.5 angstroms.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: April 20, 2021
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael D. Jensen, John Robert McCauley, Andrew G. Singleton, Demetrius Michos
  • Patent number: 10940460
    Abstract: An intercalated, modified and calcined smectite clay comprising (a) pillars comprising aluminum and: (i) at least one rare earth or lanthanide group metal; or (ii) at least one rare earth or lanthanide group metal and gallium; and (b) at least one ion-exchanged metal selected from the group consisting of aluminum, barium, beryllium, calcium, cerium, cesium, copper, chromium, gadolinium, gallium, germanium, hafnium, holmium, iron (II and III), lanthanum, lithium, magnesium, manganese, neodymium, potassium, praseodymium, rubidium, samarium, silver, selenium, sodium, strontium, tellurium, terbium, thallium, thorium, tin, titanium, uranium, ytterbium, yttrium, zinc and zirconium; wherein the clay is characterized by a basal d001 spacing equal to or greater than about 18.5 angstroms; and processes for making.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: March 9, 2021
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael D. Jensen, John Robert McCauley, Andrew G. Singleton, Demetrius Michos
  • Publication number: 20180142048
    Abstract: An intercalated, modified and calcined smectite clay comprising (a) pillars comprising aluminum and: (i) at least one rare earth or lanthanide group metal; or (ii) at least one rare earth or lanthanide group metal and gallium; and (b) at least one ion-exchanged metal selected from the group consisting of aluminum, barium, beryllium, calcium, cerium, cesium, copper, chromium, gadolinium, gallium, germanium, hafnium, holmium, iron (II and III), lanthanum, lithium, magnesium, manganese, neodymium, potassium, praseodymium, rubidium, samarium, silver, selenium, sodium, strontium, tellurium, terbium, thallium, thorium, tin, titanium, uranium, ytterbium, yttrium, zinc and zirconium; wherein the clay is characterized by a basal d001 spacing equal to or greater than about 18.5 angstroms; and processes for making.
    Type: Application
    Filed: May 9, 2016
    Publication date: May 24, 2018
    Applicant: W. R. Grace & Co.-Conn.
    Inventors: Michael D. Jensen, John Robert McCauley, Andrew G. Singleton, Demetrius Michos
  • Publication number: 20180142047
    Abstract: Catalyst support-activator for olefin polymerization catalysts, and processes for making, the support-activator comprising an intercalated, modified and calcined smectite clay comprising (a) pillars comprising aluminum and optionally: (i) at least one rare earth or lanthanide group metal; or (ii) at least one rare earth or lanthanide group metal and gallium; and (b) at least one ion-exchanged metal ion selected from the group consisting of aluminum, barium, beryllium, calcium, cerium, cesium, copper, chromium, gadolinium, gallium, germanium, hafnium, holmium, iron (II and III), lanthanum, lithium, magnesium, manganese, neodymium, potassium, praseodymium, rubidium, samarium, silver, selenium, sodium, strontium, tellurium, terbium, thallium, thorium, tin, titanium, uranium, ytterbium, yttrium, zinc and zirconium. The pillared clay exhibits a basal d100 spacing of: (A) 9 to 18 angstroms; or (B) equal to or greater than about 18.5 angstroms.
    Type: Application
    Filed: May 9, 2016
    Publication date: May 24, 2018
    Applicant: W. R. Grace & Co.-Conn.
    Inventors: Michael D. Jensen, John Robert McCauley, Andrew G. Singleton, Demetrius Michos
  • Patent number: 9365664
    Abstract: The invention concerns catalysts comprising (i) a clad catalyst support comprising (a) a core which comprises alumina particles and (b) about 1 to about 40 weight percent silica cladding, based on the weight of the clad catalyst support, on the surface of the core; the catalyst support having a BET surface area of greater than 20 m2/g and a porosity of at least about 0.2 cc/g; and (ii) 0.1 to 10 weight percent, based on the weight of the catalyst, of catalytically active transition metal on the surface of the clad catalyst support; wherein the catalyst support has a normalized sulfur uptake (NSU) of up to 25 ?g/m2. The invention also concerns the production and use of such catalyst.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: June 14, 2016
    Assignee: W. R. GRACE & CO. -CONN.
    Inventors: Stephen R. Schmidt, David M. Chapman, Manoj M. Koranne, Michael D. Jensen
  • Patent number: 9283567
    Abstract: A shredder has a jam proof system with a thickness detector having a contact member which displaces as an article is inserted into the shredder and a resistance generating mechanism which provides a resistance force to the contact member, in response to its displacement. The greater the thickness of the article, the greater the resistance force realized. When a predetermined thickness is reached, there is a significant change in the resistance force. The resistance generating mechanism may include at least two spring mechanisms and provide feedback to the user that the inserted article may be too thick. In addition, the thickness detector may include a thickness sensor. The sensor may communicate with a controller to alert the user, and/or alter the operation of the shredder, in response to the thickness of the inserted article. For example, the controller may visually and/or audibly alert the user, or control shredder motor response.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 15, 2016
    Assignee: FELLOWES, INC.
    Inventors: Jin Hu, Qingcheng Cai, Aiyu Huang, Michael D Jensen
  • Publication number: 20150210784
    Abstract: The invention concerns catalysts comprising (i) a clad catalyst support comprising (a) a core which comprises alumina particles and (b) about 1 to about 40 weight percent silica cladding, based on the weight of the clad catalyst support, on the surface of the core; the catalyst support having a BET surface area of greater than 20 m2/g and a porosity of at least about 0.2 cc/g; and (ii) 0.1 to 10 weight percent, based on the weight of the catalyst, of catalytically active transition metal on the surface of the clad catalyst support; wherein the catalyst support has a normalized sulfur uptake (NSU) of up to 25 ?g/m2. The invention also concerns the production and use of such catalyst.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 30, 2015
    Applicant: W. R Grace & Co.-Conn.
    Inventors: Stephen R. Schmidt, David M. Chapman, Manoj M. Koranne, Michael D. Jensen
  • Patent number: 9045569
    Abstract: Olefin polymerization catalysts or catalyst systems comprising a mixture, contact product, reaction product or complex comprising as elements or components: (A) at least one metallocene pre-catalyst compound or polymerization active metallocene compound; (B) at least one titanium containing metallocene compound; and when (A) is a metallocene pre-catalyst compound, (C) at least one activator; provided however: (I) the titanium-containing metallocene compound is inactive or substantially inactive for the polymerization of olefins prior to or concurrently with the use of the catalyst system for olefin polymerization.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: June 2, 2015
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael D. Jensen, Michael J. Elder, Andrew G. Singleton, Stephen R. Schmidt, Patrick J. Kerwin, John H. Hain, Jr., Fengjun Hua
  • Patent number: 8925841
    Abstract: An electrical appliance, such as a shredder, having low standby power consumption is provided. A power isolation circuit is positioned to electrically disconnect electronic components of the shredder from the shredder's primary power source. An auxiliary power source may generate or store power for powering electronic components, such as sensors or processors, while the primary power source is disconnected. A power isolation controller may use a timer, light detector, or user interaction sensors to determine whether to reconnect the primary power source to the electronic components.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: January 6, 2015
    Assignee: Fellowes, Inc.
    Inventors: Michael D. Jensen, Adam Kadolph
  • Patent number: 8673806
    Abstract: The invention concerns catalysts comprising (i) a cladded catalyst support comprising (a) a core which comprises alumina particles and (b) about 1 to about 40 weight percent silica cladding, based on the weight of the cladded catalyst support, on the surface of the core; the catalyst support having a BET surface area of greater than 20 m2/g and a porosity of at least about 0.2 cc/g; and (ii) 0.1 to 10 weight percent, based on the weight of the catalyst, of catalytically active transition metal on the surface of the cladded catalyst support; wherein the catalyst support has a normalized sulfur uptake (NSU) of up to 25 ?g/m2. The invention also concerns the production and use of such catalysts.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 18, 2014
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Stephen R. Schmidt, David M. Chapman, Manoj M. Koranne, Michael D. Jensen
  • Patent number: 8637691
    Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The compositions and methods presented herein include ethylene polymers with low melt elasticity.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: January 28, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Youlu Yu, David C. Rohlfing, Michael D. Jensen
  • Publication number: 20130289227
    Abstract: Olefin polymerization catalysts or catalyst systems comprising a mixture, contact product, reaction product or complex comprising as elements or components: (A) at least one metallocene pre-catalyst compound or polymerization active metallocene compound; (B) at least one titanium containing metallocene compound; and when (A) is a metallocene pre-catalyst compound, (C) at least one activator; provided however: (I) the titanium-containing metallocene compound is inactive or substantially inactive for the polymerization of olefins prior to or concurrently with the use of the catalyst system for olefin polymerization.
    Type: Application
    Filed: January 12, 2012
    Publication date: October 31, 2013
    Applicant: W.R. GRACE & CO.-CONN
    Inventors: Michael D. Jensen, Michael J. Elder, Andrew G. Singleton, Stephen R. Schmidt, Patrick J. Kerwin, John H. Hain, JR., Fengjun Hua
  • Publication number: 20130245302
    Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The compositions and methods presented herein include ethylene polymers with low melt elasticity.
    Type: Application
    Filed: April 30, 2013
    Publication date: September 19, 2013
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Youlu Yu, David C. Rohlfing, Michael D. Jensen
  • Patent number: 8507621
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. An improved method for preparing cyclopentadienyl complexes used to produce polyolefins is also provided.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: August 13, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kumundini C. Jayaratne, Michael D. Jensen, Qing Yang
  • Patent number: 8450437
    Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The compositions and methods presented herein include ethylene polymers with low melt elasticity.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: May 28, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Youlu Yu, David C. Rohlfing, Michael D. Jensen
  • Patent number: 8430347
    Abstract: A shredder includes a housing having a throat for receiving at least one article to be shredded, a shredder mechanism received in the housing and including a powered motor and cutter elements used to shred the at least one article, a detector configured to detect a presence of the at least one article being received by the throat, and a controller coupled to the motor and the detector. The controller is configured to allow a running operation of the motor responsive to the detector detecting an article being received by the throat. Also, after a predetermined amount of time, the controller may stop operation of the motor if an article is not inserted into the throat. A thickness detector may also be used in the shredder.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: April 30, 2013
    Assignee: Fellowes, Inc.
    Inventors: Michael D. Jensen, Tai Hoon K. Matlin, Chen Hai Ting
  • Patent number: 8426538
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 23, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy L. Muninger, Gary G. Jerdee, Ashish M. Sukhadia, Qing R. Yang, Matthew G. Thorn