Patents by Inventor Michael D. Romano

Michael D. Romano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230203724
    Abstract: A nonwoven biofabric comprises a web comprising (a) biodegradable polymeric melt blown fibers, and (b) a plurality of particles enmeshed in the biodegradable polymeric meltblown fibers.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 29, 2023
    Inventors: Ignatius A. Kadoma, Jeffrey A. Chambers, Michael D. Romano
  • Patent number: 11105018
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: August 31, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Publication number: 20210148022
    Abstract: Biodegradable layered composite comprising a first nonwoven biodegradable layer having a first and second major surface, the first nonwoven biodegradable layer comprising biodegradable polymeric melt-blown fibers, and a plurality of activated carbon particles enmeshed in the biodegradable polymeric melt-blown fibers. Biodegradable layered composite described herein can be used, for example, as a porous capture media for suspended nutrients in agricultural drainage.
    Type: Application
    Filed: March 19, 2019
    Publication date: May 20, 2021
    Inventors: Ignatius A. Kadoma, Jeffrey A. Chambers, Michael D. Romano, Mark Litwinow, Olaf C. Moberg
  • Publication number: 20210146665
    Abstract: Biodegradable layered composite comprising a first nonwoven biodegradable layer having a first and second major surface, the first nonwoven biodegradable layer comprising biodegradable polymeric melt-blown fibers, and a plurality of particles enmeshed in the biodegradable polymeric melt-blown fibers; and a biodegradable polymer film on at least a portion of the first major surface of the first nonwoven biodegradable layer. Biodegradable layered composite described herein can be used, for example, as biomulch for controlling weed growth and moisture.
    Type: Application
    Filed: March 19, 2019
    Publication date: May 20, 2021
    Inventors: Ignatius A. Kadoma, Jeffrey A. Chambers, Michael D. Romano, Marie E. Vanderlaan
  • Publication number: 20200208314
    Abstract: Nonwoven webs including one or more semi-continuous filaments made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. The at least one semi-continuous filament exhibits molecular orientation, and at least one of the crystalline polyolefin (co)polymer or the nonwoven web exhibits a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g. A process for making the semi-continuous filaments and nonwoven webs is also disclosed.
    Type: Application
    Filed: July 30, 2018
    Publication date: July 2, 2020
    Inventors: Eugene G. Joseph, Saurabh Batra, Michael R. Berrigan, John D. Stelter, Jacob J. Thelen, Zackary J. Becker, Liyun Ren, Sachin Talwar, Michael D. Romano
  • Publication number: 20200115833
    Abstract: Nonwoven fibrous webs including a multiplicity of (co)polymeric fibers made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. A process for making the nonwoven fibrous webs includes heating the foregoing mixture to at least a Melting Temperature of the mixture to form a molten mixture, extruding this molten mixture through at least one orifice to form at least one filament, applying a gaseous stream to attenuate the at least one filament to form a plurality of discrete, discontinuous fibers, and cooling the plurality of discrete, discontinuous fibers to a temperature below the Melting Temperature and collecting the discrete discontinuous fibers as a nonwoven fibrous web. The nonwoven fibrous webs exhibit a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g.
    Type: Application
    Filed: July 30, 2018
    Publication date: April 16, 2020
    Inventors: Eugene G. Joseph, Saurabh Batra, Liyun Ren, Sachin Talwar, Michael D. Romano, Michael R. Berrigan
  • Publication number: 20200002857
    Abstract: A nonwoven biofabric comprises a web comprising (a) biodegradable polymeric melt blown fibers, and (b) a plurality of particles enmeshed in the biodegradable polymeric meltblown fibers.
    Type: Application
    Filed: March 7, 2018
    Publication date: January 2, 2020
    Inventors: Ignatius A. Kadoma, Jeffrey A. Chambers, Michael D. Romano
  • Publication number: 20190338447
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Patent number: 10400354
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: September 3, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Publication number: 20190097241
    Abstract: The present disclosure relates to electrode assemblies, membrane-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The electrode and membrane-electrode assemblies include (i) a porous electrode having a first major surface with a first surface area, Ae, an opposed second major surface and a plurality of voids; (ii) a discontinuous transport protection layer, comprising polymer, disposed on the first major surface and having a cross-sectional area, Ap, substantially parallel to the first major surface; and (iii) an interfacial region wherein the interfacial region includes a portion of the polymer embedded in at least a portion of the plurality of voids, a portion of the porous electrode embedded in a portion of the polymer or a combination thereof; and wherein 0.02Ae?Ap?0.85Ae and the porous electrode and discontinuous transport protection layer form an integral structure.
    Type: Application
    Filed: March 15, 2017
    Publication date: March 28, 2019
    Inventors: Brian T. Weber, Brandon A. Bartling, Onur S. Yordem, Raymond P. Johnston, Andrew T. Haug, John E. Abulu, Gregory M. Haugen, Kazuki Noda, Shunsuke Suzuki, Jimmy M. Le, Blake R. Griffith, Daniel E. Johnson, Bharat R. Acharya, Bradley W. Eaton, Michael D. Romano, Daniel M. Pierpont, David J. Miller, Eric J. Iverson
  • Publication number: 20160298266
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Application
    Filed: November 19, 2014
    Publication date: October 13, 2016
    Applicant: 3M Innovative Properties Company
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Patent number: 5706804
    Abstract: A face mask including a face-contacting layer, an outer cover layer, a polymeric microfiber mat disposed between the face-contacting layer and the outer cover layer, and a non-woven fibrous mat disposed between the face-contacting layer and the outer cover layer. The non-woven fibrous mat includes polymeric fibers and a surface energy reducing agent. The face-contacting layer, the cover layer, the polymeric microfiber mat, and the non-woven fibrous mat cooperate with each other to allow gas to pass through the mask while inhibiting the passage of liquid through the mask.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: January 13, 1998
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Nicholas R. Baumann, John M. Brandner, John A. Temperante, Shannon Dowdell, Michael D. Romano, Scott J. Tuman, Matthew T. Scholz