Patents by Inventor Michael D. Steigerwalt

Michael D. Steigerwalt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8598009
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 3, 2013
    Assignees: International Business Machines Corporation, Globalfoundries, Inc.
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Publication number: 20120228716
    Abstract: A structure including an NFET having an embedded silicon germanium (SiGe) plug in a channel of the NFET; a PFET having a SiGe channel; and a trench isolation between the NFET and the PFET, wherein the NFET and the PFET are devoid of SiGe epitaxial growth edge effects.
    Type: Application
    Filed: May 23, 2012
    Publication date: September 13, 2012
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC., ADVANCED MICRO DEVICES, INC.
    Inventors: Eric C. T. Harley, Judson R. Holt, Dominic J. Schepis, Michael D. Steigerwalt, Linda Black, Rick Carter
  • Publication number: 20120208337
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicants: GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Patent number: 8232186
    Abstract: Methods of integrating reverse embedded silicon germanium (SiGe) on an NFET and SiGe channel on a PFET, and a related structure are disclosed. One method may include providing a substrate including an NFET area and a PFET area; performing a single epitaxial growth of a silicon germanium (SiGe) layer over the substrate; forming an NFET in the NFET area, the NFET including a SiGe plug in a channel thereof formed from the SiGe layer; and forming a PFET in the PFET area, the PFET including a SiGe channel formed from the SiGe layer. As an option, the SiGe layer over the PFET area may be thinned.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 31, 2012
    Assignees: International Business Machines Corporation, Globalfoundries
    Inventors: Eric C. T. Harley, Judson R. Holt, Dominic J. Schepis, Michael D. Steigerwalt, Linda Black, Rick Carter
  • Patent number: 8222673
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: July 17, 2012
    Assignees: International Business Machines Corporation, Globalfoundries Inc.
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Publication number: 20110298008
    Abstract: A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 8, 2011
    Applicants: GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian J. Greene, William K. Henson, Judson R. Holt, Michael D. Steigerwalt, Kuldeep Amarnath, Rohit Pal, Johan W. Weijtmans
  • Patent number: 7911024
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: March 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20100207683
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7763518
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: July 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7691716
    Abstract: The present invention provides a “subcollector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped subcollector. Instead, the inventive vertical SOI BJT uses a back gate-induced, majority carrier accumulation layer as the subcollector when it operates. The SOI substrate is biased such that the accumulation layer is formed at the bottom of the first semiconductor layer. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS. A back-gated CMOS device is also provided.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiging Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20090294801
    Abstract: Methods of integrating reverse embedded silicon germanium (SiGe) on an NFET and SiGe channel on a PFET, and a related structure are disclosed. One method may include providing a substrate including an NFET area and a PFET area; performing a single epitaxial growth of a silicon germanium (SiGe) layer over the substrate; forming an NFET in the NFET area, the NFET including a SiGe plug in a channel thereof formed from the SiGe layer; and forming a PFET in the PFET area, the PFET including a SiGe channel formed from the SiGe layer. As an option, the SiGe layer over the PFET area may be thinned.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES, INC.
    Inventors: Eric C. T. Harley, Judson R. Holt, Dominic J. Schepis, Michael D. Steigerwalt, Linda Black, Rick Carter
  • Patent number: 7485537
    Abstract: The present invention provides a a method of fabricating bipolar junction transistors (BJTs) on selected areas of a very thin buried oxide (BOX) using a conventional silicon-on-insulator (SOI) starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20080261371
    Abstract: The present invention provides a “subcollector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped subcollector. Instead, the inventive vertical SOI BJT uses a back gate-induced, majority carrier accumulation layer as the subcollector when it operates. The SOI substrate is biased such that the accumulation layer is formed at the bottom of the first semiconductor layer. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS. A back-gated CMOS device is also provided.
    Type: Application
    Filed: June 24, 2008
    Publication date: October 23, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herbert L. Ho, Mahender Kumar, Qiging Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20080230869
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Application
    Filed: April 8, 2008
    Publication date: September 25, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7394131
    Abstract: Methods for forming or etching silicon trench isolation (STI) in a silicon-on-insulator (SOI) region and a bulk silicon region, and a semiconductor device so formed, are disclosed. The STI can be etched simultaneously in the SOI and bulk silicon regions by etching to an uppermost silicon layer using an STI mask, conducting a timed etch that etches to a desired depth in the bulk silicon region and stops on a buried insulator of the SOI region, and etching through the buried insulator of the SOI region. The buried insulator etch for this process can be done with little complexity as part of a hardmask removal step. Further, by choosing the same depth for both the bulk and SOI regions, problems with a subsequent CMP process are avoided. The invention also cleans up the boundary between the SOI and bulk regions where silicon nitride residuals may exist.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Michael D. Steigerwalt, Mahender Kumar, Herbert L. Ho, David M. Dobuzinsky, Johnathan E. Faltermeier, Denise Pendleton
  • Publication number: 20080132025
    Abstract: The present invention provides a “collector-less” silcon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BIJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Application
    Filed: October 23, 2007
    Publication date: June 5, 2008
    Applicant: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7375410
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: May 20, 2008
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7118986
    Abstract: Methods for forming or etching silicon trench isolation (STI) in a silicon-on-insulator (SOI) region and a bulk silicon region, and a semiconductor device so formed, are disclosed. The STI can be etched simultaneously in the SOI and bulk silicon regions by etching to an uppermost silicon layer using an STI mask, conducting a timed etch that etches to a desired depth in the bulk silicon region and stops on a buried insulator of the SOI region, and etching through the buried insulator of the SOI region. The buried insulator etch for this process can be done with little complexity as part of a hardmask removal step. Further, by choosing the same depth for both the bulk and SOI regions, problems with a subsequent CMP process are avoided. The invention also cleans up the boundary between the SOI and bulk regions where silicon nitride residuals may exist.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: October 10, 2006
    Assignee: International Business Machines Corporation
    Inventors: Michael D. Steigerwalt, Mahender Kumar, Herbert L. Ho, David M. Dobuzinsky, Johnathan E. Faltermeier, Denise Pendleton
  • Patent number: 7115965
    Abstract: The present invention provides a “subcollector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped subcollector. Instead, the inventive vertical SOI BJT uses a back gate-induced, majority carrier accumulation layer as the subcollector when it operates. The SOI substrate is biased such that the accumulation layer is formed at the bottom of the first semiconductor layer. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS. A back-gated CMOS device is also provided.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: October 3, 2006
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7115463
    Abstract: The present invention provides a method of fabricating a patterned silicon-on-insulator substrate which includes dual depth SOI regions or both SOI and non-SOI regions within the same substrate. The method of the present invention includes forming a silicon mask having at least one opening on a surface of Si-containing material, recessing the Si-containing material through the at least one opening using an etching process to provide a structure having at least one recess region and a non-recessed region, and forming a first buried insulating region in the non-recessed region and a second buried insulating region in the recessed region. In accordance with the present invention, the first buried insulating region in the non-recessed region is located above the second buried isolation region in the recessed region. A lift-off step can be employed to remove the first buried insulating region and the material that lies above to provide a substrate containing both SOI and non-SOI regions.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: October 3, 2006
    Assignee: International Business Machines Corporation
    Inventors: Devendra K. Sadana, Dominic J. Schepis, Michael D. Steigerwalt