Patents by Inventor Michael D. Welch

Michael D. Welch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130033955
    Abstract: A process for making concrete includes treating water with ions and/or ozone to form treated water, and mixing the treated water with aggregate and cement. A system for making concrete includes means for treating charging water with ions, ozone and/or charged particles to form treated water, and means for mixing the treated water with aggregate and cement.
    Type: Application
    Filed: May 28, 2012
    Publication date: February 7, 2013
    Applicant: RRAM-Crete, LC
    Inventors: Richard Sealy Clayton, Robb Scott Miller, Michael D. Welch, Andy Max Cox, Jaiden Thomas Olsen
  • Patent number: 7147719
    Abstract: In a substrate vacuum processing chamber, a second inner slit passage door apparatus and method to supplement the normal slit valve and its door at the outside of the chamber. The inner slit passage door, blocks the slit passage at or adjacent the substrate processing location in a vacuum processing chamber to prevent process byproducts from depositing on the inner surfaces of the slit passage beyond the slit passage door and improves the uniformity of plasma in the processing chamber by eliminating a large cavity adjacent to the substrate processing location into which the plasma would otherwise expand.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: December 12, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Michael D. Welch, Homgqing Shan, Paul E. Luscher, Evans Y. Lee, James D. Carducci, Siamak Salimian
  • Patent number: 7115523
    Abstract: A process is provided for etching a silicon based material in a substrate, such as a photomask, to form features with straight sidewalls, flat bottoms, and high profile angles between the sidewalls and bottom, and minimizing the formation of polymer deposits on the substrate. In the etching process, the substrate is positioned in a processing chamber, a processing gas comprising a fluorocarbon, which advantageously is a hydrogen free fluorocarbon, is introduced into the processing chamber, wherein the substrate is maintained at a reduced temperature, and the processing gas is excited into a plasma state at a reduced power level to etch the silicon based material of the substrate. The processing gas may further comprise an inert gas, such as argon.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: October 3, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Brigitte C. Stoehr, Michael D. Welch, Melisa J. Buie
  • Patent number: 6899111
    Abstract: The present invention provides a method and an apparatus for cleaning substrates. The cleaning chamber defines a processing cavity adapted to accommodate a substrate therein. In one embodiment, the cleaning chamber includes a chamber body having a processing cavity defined therein. A substrate is disposed in the processing cavity without contacting other chamber components by a Bernoulli effect and/or by a fluid cushion above and/or below the substrate. Fluid is flowed into the processing cavity at an angle relative to a radial line of the substrate to induce and/or control rotation of the substrate during a cleaning and drying process.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: May 31, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Paul E. Luscher, James D. Carducci, Siamak Salimian, Michael D. Welch
  • Patent number: 6863835
    Abstract: A plasma chamber apparatus and method employing a magnet system to block the plasma within the chamber interior from reaching the exhaust pump. An exhaust channel between the chamber interior and the pump includes a magnet and at least one deflector that creates turbulence in the flow of exhaust gases. The magnetic field and the turbulence produced by the deflector both increase the rate of recombination of charged particles in the gases, thereby reducing the concentration of charged particles sufficiently to quench the plasma downstream of the magnet and deflector, thereby preventing the plasma body within the chamber from reaching the exhaust pump. The plasma confinement effect of the magnetic field permits the use of a wider and/or less sinuous exhaust channel than would be required to block the plasma without the magnetic field.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: March 8, 2005
    Inventors: James D. Carducci, Hamid Noorbakhsh, Evans Y. Lee, Hongqing Shan, Siamak Salimian, Paul E. Luscher, Michael D. Welch
  • Patent number: 6813534
    Abstract: In an endpoint detection method for a process performed in a substrate processing chamber with an energized gas, a process variable of the process is detected. The process variable comprising at least one of (i) a radiation emitted by the energized gas, (ii) a radiation reflected from a substrate in the chamber, (iii) a reflected power level of the energized gas, and (iv) a temperature in the chamber. An endpoint signal is issued when the process variable is indicative of an endpoint of the process. A process parameter of the process is also detected, the process parameter comprising at least one of (i) a source power, (ii) an RF forward power, reflected power, or match components, (iii) an RF peak-to-peak voltage, current or phase, (iv) a DC bias level, (v) a chamber pressure or throttle valve position, (vi) a gas composition or flow rate, (vii) a substrate temperature or composition, (viii) a temperature of a chamber component or wall, and (ix) a magnetic confinement level or magnet position.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: November 2, 2004
    Inventors: Zhifeng Sui, Paul E Luscher, Nils Johansson, Michael D Welch
  • Patent number: 6797639
    Abstract: A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: September 28, 2004
    Assignee: Applied Materials Inc.
    Inventors: James D Carducci, Hamid Noorbakhsh, Evans Y Lee, Bryan Y Pu, Hongching Shan, Claes Bjorkman, Siamak Salimian, Paul E Luscher, Michael D Welch
  • Patent number: 6773544
    Abstract: The invention concerns a plasma reactor employing a chamber enclosure including a process gas inlet and defining a plasma processing region. A workpiece support pedestal capable of supporting a workpiece at processing location faces the plasma processing region, the pedestal and enclosure being spaced from one another to define a pumping annulus therebetween having facing walls in order to permit the process of gas to be evacuated therethrough from the process region. A pair of opposing plasma confinement magnetic poles within one of the facing walls of the annulus, the opposing magnetic poles being axially displaced from one another. The magnetic poles are axially displaced below the processing location by a distance which exceeds a substantial fraction of a spacing between the facing walls of the annulus.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: August 10, 2004
    Inventors: James D. Carducci, Hamid Noorbakhsh, Evans Y. Lee, Hongqing Shan, Siamak Salimian, Paul E. Luscher, Michael D. Welch
  • Publication number: 20040083978
    Abstract: In a substrate vacuum processing chamber, a second inner slit passage door apparatus and method to supplement the normal slit valve and its door at the outside of the chamber. The inner slit passage door, blocks the slit passage at or adjacent the substrate processing location in a vacuum processing chamber to prevent process byproducts from depositing on the inner surfaces of the slit passage beyond the slit passage door and improves the uniformity of plasma in the processing chamber by eliminating a large cavity adjacent to the substrate processing location into which the plasma would otherwise expand.
    Type: Application
    Filed: June 23, 2003
    Publication date: May 6, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Michael D. Welch, Homgqing Shan, Paul E. Luscher, Evans Y Lee, James D. Carducci, Siamak Salimian
  • Patent number: 6716302
    Abstract: A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: April 6, 2004
    Assignee: Applied Materials Inc.
    Inventors: James D Carducci, Hamid Noorbakhsh, Evans Y Lee, Bryan Y Pu, Hongching Shan, Claes Bjorkman, Siamak Salimian, Paul E Luscher, Michael D Welch
  • Patent number: 6689249
    Abstract: A ring or collar surrounding a semiconductor workpiece in a plasma chamber. According to one aspect, the ring has an elevated collar portion having an inner surface oriented at an obtuse angle to the plane of the workpiece, this angle preferably being 135°. This angular orientation causes ions bombarding the inner surface of the elevated collar to scatter in a direction more parallel to the plane of the workpiece, thereby reducing erosion of any dielectric shield at the perimeter of the workpiece, and ameliorating spatial non-uniformity in the plasma process due to any excess ion density near such perimeter. In a second aspect, the workpiece is surrounded by a dielectric shield, and the shield is covered by a non-dielectric ring which protects the dielectric shield from reaction with, or erosion by, the process gases.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: February 10, 2004
    Assignee: Applied Materials, Inc
    Inventors: Kuang-Han Ke, Bryan Y. Pu, Hongching Shan, James Wang, Henry Fong, Zongyu Li, Michael D. Welch
  • Patent number: 6647918
    Abstract: In a substrate vacuum processing chamber, a second inner slit passage door apparatus and method to supplement the normal slit valve and its door at the outside of the chamber. The inner slit passage door, blocks the slit passage at or adjacent the substrate processing location in a vacuum processing chamber to prevent process byproducts from depositing on the inner surfaces of the slit passage beyond the slit passage door and improves the uniformity of plasma in the processing chamber by eliminating a large cavity adjacent to the substrate processing location into which the plasma would otherwise expand.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: November 18, 2003
    Assignee: Applied Materials, Inc
    Inventors: Michael D. Welch, Homgqing Shan, Paul E. Luscher, Evans Y. Lee, James D. Carducci, Siamak Salimian
  • Patent number: 6592673
    Abstract: A chamber 25 comprises a support 45 for holding a substrate 20 and a sensor system 135 adapted to detect the presence or proper placement of the substrate 20 on the support 45. The support 45 comprises a window 155 that is transparent and adapted to transmit light therethrough. The sensor system 135 comprises a light source 140 adapted to direct a light beam 150 through the window 155 and a light sensor 160 in the path of the light beam 150. The light beam 150 is sensed by the light sensor 135 when the substrate 20 is properly positioned and the light beam 150 is blocked from the light sensor 135 when the substrate 20 is improperly positioned or vice versa. Preferably, the support 45 comprises an electrostatic chuck 55 adapted to electrostatically hold the substrate 20, the electrostatic chuck 55 comprising a window 155 composed of transparent material or a cut-out or a hole therein.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: July 15, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Michael D. Welch, Harald Herchen
  • Patent number: 6534417
    Abstract: A process is provided for etching a silicon based material in a substrate, such as a photomask, to form features with straight sidewalls, flat bottoms, and high profile angles between the sidewalls and bottom, and minimizing the formation of polymer deposits on the substrate. In the etching process, the substrate is positioned in a processing chamber, a processing gas comprising a fluorocarbon, which advantageously is a hydrogen free fluorocarbon, is introduced into the processing chamber, wherein the substrate is maintained at a reduced temperature, and the processing gas is excited into a plasma state at a reduced power level to etch the silicon based material of the substrate. The processing gas may further comprise an inert gas, such as argon.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: March 18, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Brigitte C. Stoehr, Michael D. Welch
  • Publication number: 20030038111
    Abstract: A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
    Type: Application
    Filed: September 24, 2002
    Publication date: February 27, 2003
    Applicant: Applied Materials, Inc.
    Inventors: James D. Carducci, Hamid Noorbakhsh, Evans Y. Lee, Bryan Y. Pu, Hongqing Shan, Claes Bjorkman, Siamak Salimian, Paul E. Luscher, Michael D. Welch
  • Publication number: 20030037880
    Abstract: A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
    Type: Application
    Filed: September 24, 2002
    Publication date: February 27, 2003
    Applicant: Applied Materials, Inc.
    Inventors: James D. Carducci, Hamid Noorbakhsh, Evans Y. Lee, Bryan Y. Pu, Hongching Shan, Claes Bjorkman, Siamak Salimian, Paul E. Luscher, Michael D. Welch
  • Patent number: 6513452
    Abstract: A method of adjusting the cathode DC bias in a plasma chamber for fabricating semiconductor devices. A dielectric shield is positioned between the plasma and a selected portion of the electrically grounded components of the chamber, such as the electrically grounded chamber wall. The cathode DC bias is adjusted by controlling one or more of the following parameters: (1) the surface area of the chamber wall or other grounded components which is blocked by the dielectric shield; (2) the thickness of the dielectric; (3) the gap between the shield and the chamber wall; and (4) the dielectric constant of the dielectric material. In an apparatus aspect, the invention is a plasma chamber for fabricating semiconductor devices having an exhaust baffle with a number of sinuous passages. Each passage is sufficiently long and sinuous that no portion of the plasma within the chamber can extend beyond the outlet of the passage.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: February 4, 2003
    Assignee: Applied Materials Inc.
    Inventors: Hongching Shan, Evans Y. Lee, Michael D. Welch, Robert W. Wu, Bryan Y. Pu, Paul E. Luscher, James D. Carducci, Richard Blume
  • Publication number: 20020189638
    Abstract: The present invention provides a method and an apparatus for cleaning substrates. The cleaning chamber defines a processing cavity adapted to accommodate a substrate therein. In one embodiment, the cleaning chamber includes a chamber body having a processing cavity defined therein. A substrate is disposed in the processing cavity without contacting other chamber components by a Bernoulli effect and/or by a fluid cushion above and/or below the substrate. Fluid is flowed into the processing cavity at an angle relative to a radial line of the substrate to induce and/or control rotation of the substrate during a cleaning and drying process.
    Type: Application
    Filed: October 31, 2001
    Publication date: December 19, 2002
    Inventors: Paul E. Luscher, James D. Carducci, Siamak Salimian, Michael D. Welch
  • Publication number: 20020183977
    Abstract: In an endpoint detection method for a process performed in a substrate processing chamber with an energized gas, a process variable of the process is detected. The process variable comprising at least one of (i) a radiation emitted by the energized gas, (ii) a radiation reflected from a substrate in the chamber, (iii) a reflected power level of the energized gas, and (iv) a temperature in the chamber. An endpoint signal is issued when the process variable is indicative of an endpoint of the process. A process parameter of the process is also detected, the process parameter comprising at least one of (i) a source power, (ii) an RF forward power, reflected power, or match components, (iii) an RF peak-to-peak voltage, current or phase, (iv) a DC bias level, (v) a chamber pressure or throttle valve position, (vi) a gas composition or flow rate, (vii) a substrate temperature or composition, (viii) a temperature of a chamber component or wall, and (ix) a magnetic confinement level or magnet position.
    Type: Application
    Filed: February 20, 2002
    Publication date: December 5, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Zhifeng Sui, Paul E. Luscher, Nils Johansson, Michael D. Welch
  • Publication number: 20020155725
    Abstract: A process is provided for etching a silicon based material in a substrate, such as a photomask, to form features with straight sidewalls, flat bottoms, and high profile angles between the sidewalls and bottom, and minimizing the formation of polymer deposits on the substrate. In the etching process, the substrate is positioned in a processing chamber, a processing gas comprising a fluorocarbon, which advantageously is a hydrogen free fluorocarbon, is introduced into the processing chamber, wherein the substrate is maintained at a reduced temperature, and the processing gas is excited into a plasma state at a reduced power level to etch the silicon based material of the substrate. The processing gas may further comprise an inert gas, such as argon.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 24, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Brigitte C. Stoehr, Michael D. Welch