Patents by Inventor Michael David Church

Michael David Church has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115829
    Abstract: There is disclosed system for oxygenating a patient in relation to anaesthesia using high flow gas delivery. The system has a flow source, and a controller for determining oxygenation requirements of the patient before or during anaesthesia. A method of oxygenating a patient in relation to anaesthesia using high flow gas delivery is also disclosed. The method determines oxygenation requirements of the patient before or during anaesthesia.
    Type: Application
    Filed: August 22, 2023
    Publication date: April 11, 2024
    Inventors: Matthew Jon Payton, Alicia Jerram Hunter Evans, Thomas Henrich Barnes, Dexter Chi Lun Cheung, Craig Karl White, Anthony Brendan Williams, Laurence Gulliver, Michael Barraclough, Jonathan Mark Church, Jonathan David Harwood, Samantha Dale Oldfield, Callum James Thomas Spence, Milanjot Singh Assi
  • Patent number: 8728875
    Abstract: A polycrystalline fuse includes a first layer of polycrystalline material on a substrate and a second layer of a silicide material on the first layer. The first and second layers are shaped to form first and second terminal portions of a first width joined along a length of the fuse by a fuse portion of a second width narrower than the first width. First and second contacts are connected to the first and second terminal portions respectively. The silicide material being discontinuous in a terminal region of the second layer along the length of the fuse.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: May 20, 2014
    Assignee: Intersil Corporation
    Inventor: Michael David Church
  • Patent number: 8647971
    Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: February 11, 2014
    Assignee: Intersil Americas Inc.
    Inventors: Dev Alok Girdhar, Michael David Church, Alexander Kalnitsky
  • Patent number: 8426745
    Abstract: A method and structure for a semiconductor device which provides for an etch of a metal layer such as an interconnect layer which does not affect a thinner layer such as a thin film resistor (TFR) layer, such as a circuit resistor. In one embodiment, a TFR resistor layer is protected by a patterned protective layer during an etch of the metal layer, and provides an underlayer for the metal layer. In another embodiment, the TFR layer is formed after providing the patterned metal layer. The metal layer can provide, for example, end caps for the circuit resistor.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: April 23, 2013
    Assignee: Intersil Americas Inc.
    Inventors: Stephen Jospeh Gaul, Michael David Church
  • Patent number: 8368166
    Abstract: A junction barrier Schottky diode has N-type well having a surface and first peak impurity concentration; P-type anode region in surface of the well having second peak impurity concentration; N-type cathode contact region in surface of the well and laterally spaced from a first wall of the anode region having third peak impurity concentration; and first N-type region in surface of the well and laterally spaced from second wall of the anode region having fourth impurity concentration. Center of the spaced region between the first N-type region and the second wall of the anode region has fifth peak impurity concentration. Ohmic contact is made to the anode region and cathode contact region. Schottky contact is made to the first N-type region. First and fifth peak impurity concentrations are less than the fourth peak impurity concentration. The fourth peak impurity concentration is less than the second and third peak impurity concentrations.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: February 5, 2013
    Assignee: Intersil Americas Inc.
    Inventors: Dev Alok Girdhar, Michael David Church
  • Publication number: 20120122308
    Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
    Type: Application
    Filed: January 23, 2012
    Publication date: May 17, 2012
    Inventors: Dev Alok Girdhar, Michael David Church, Alexander Kalnitsky
  • Patent number: 8101511
    Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: January 24, 2012
    Assignee: Intersil Americas Inc.
    Inventors: Dev Alok Girdhar, Michael David Church, Alexander Kalnitsky
  • Patent number: 8101977
    Abstract: A polycrystalline fuse includes a first layer of polycrystalline material on a substrate and a second layer of a silicide material on the first layer. The first and second layers are shaped to form first and second terminal portions of a first width joined along a length of the fuse by a fuse portion of a second width narrower than the first width. First and second contacts are connected to the first and second terminal portions respectively. The silicide material being discontinuous in a terminal region of the second layer along the length of the fuse.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 24, 2012
    Assignee: Intersil Corporation
    Inventor: Michael David Church
  • Publication number: 20110177684
    Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
    Type: Application
    Filed: May 6, 2010
    Publication date: July 21, 2011
    Applicant: Intersil Americas Inc.
    Inventors: Dev Alok GIRDHAR, Michael David Church, Alexander Kalnitsky
  • Publication number: 20110156810
    Abstract: Embodiments relate generally to voltage converter structures including a diffused metal oxide semiconductor (DMOS) field effect transistors (FET). Embodiments include the combination of DMOS devices (e.g., FETs with isolated bodies from the substrate) with Schottky diodes on a single semiconductor die. The Schottky diode can be integrated into a cell of a DMOS device by forming an N-type area in the P-body region of the DMOS device.
    Type: Application
    Filed: November 12, 2010
    Publication date: June 30, 2011
    Inventors: Dev Alok Girdhar, Michael David Church
  • Publication number: 20110128692
    Abstract: A method and structure for a semiconductor device which provides for an etch of a metal layer such as an interconnect layer which does not affect a thinner layer such as a thin film resistor (TFR) layer, such as a circuit resistor. In one embodiment, a TFR resistor layer is protected by a patterned protective layer during an etch of the metal layer, and provides an underlayer for the metal layer. In another embodiment, the TFR layer is formed after providing the patterned metal layer. The metal layer can provide, for example, end caps for the circuit resistor.
    Type: Application
    Filed: August 25, 2010
    Publication date: June 2, 2011
    Inventors: Stephen Jospeh Gaul, Michael David Church
  • Publication number: 20100314708
    Abstract: A junction barrier Schottky diode has an N-type well having a surface and a first peak impurity concentration; a P-type anode region in the surface of the well, and having a second peak impurity concentration; an N-type cathode contact region in the surface of the well and laterally spaced from a first wall of the anode region, and having a third peak impurity concentration; and a first N-type region in the surface of the well and laterally spaced from a second wall of the anode region, and having a fourth impurity concentration. The center of the spaced region between the first N-type region and the second wall of the anode region has a fifth peak impurity concentration. An ohmic contact is made to the anode region and cathode contact region, and a Schottky contact is made to the first N-type region. The first and fifth peak impurity concentrations are less than the fourth peak impurity concentration, and the fourth peak impurity concentration is less that the second and third peak impurity concentrations.
    Type: Application
    Filed: August 25, 2010
    Publication date: December 16, 2010
    Applicant: Intersil Americas Inc.
    Inventors: Dev Alok Girdhar, Michael David Church
  • Patent number: 7829970
    Abstract: A junction barrier Schottky diode has an N-type well having surface and a first impurity concentration; a p-type anode region in the surface of the well, and having a second impurity concentration; and an N-type cathode region in the surface of the well and horizontally abutting the anode region, and having a third impurity concentration. A first N-type region vertically abuts the anode and cathode regions, and has a fourth impurity concentration. An ohmic contact is made to the anode and a Schottky contact is made to the cathode. The fourth impurity concentration is less than the first, second and third impurity concentrations.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: November 9, 2010
    Assignee: Intersil Americas Inc.
    Inventors: Dev Alok Girdhar, Michael David Church
  • Patent number: 7750426
    Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: July 6, 2010
    Assignee: Intersil Americas, Inc.
    Inventors: Dev Alok Girdhar, Michael David Church, Alexander Kalnitsky
  • Patent number: 7700977
    Abstract: An integrated circuit includes a first and second diode connected in parallel. The first diode has a first breakdown voltage and has first P type region and first N type region adjacent to each other at the surface of the substrate of a substrate to form a lateral diode. The second diode has a second breakdown voltage less than the first breakdown voltage and has a second P type region and second N type region lateral adjacent to each other in the substrate to form a lateral diode below the surface The first and second N type regions overlap and the first and second P type region being electrically connected whereby the first and second diodes are in parallel.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: April 20, 2010
    Assignee: Intersil Americas Inc.
    Inventors: Michael David Church, Alexander Kalnitsky, Lawrence George Pearce, Michael Ray Jayne, Thomas Andrew Jochum
  • Publication number: 20080315329
    Abstract: An integrated circuit includes a first and second diode connected in parallel. The first diode has a first breakdown voltage and has first P type region and first N type region adjacent to each other at the surface of the substrate of a substrate to form a lateral diode. The second diode has a second breakdown voltage less than the first breakdown voltage and has a second P type region and second N type region lateral adjacent to each other in the substrate to form a lateral diode below the surface The first and second N type regions overlap and the first and second P type region being electrically connected whereby the first and second diodes are in parallel.
    Type: Application
    Filed: February 26, 2008
    Publication date: December 25, 2008
    Applicant: Intersil Americas Inc.
    Inventors: MICHAEL DAVID CHURCH, Alexander Kalnitsky, Lawrence George Pearce, Michael Ray Jayne, Thomas Andrew Jochum
  • Publication number: 20080296722
    Abstract: A junction barrier Schottky diode has an N-type well having surface and a first impurity concentration; a p-type anode region in the surface of the well, and having a second impurity concentration; and an N-type cathode region in the surface of the well and horizontally abutting the anode region, and having a third impurity concentration. A first N-type region vertically abuts the anode and cathode regions, and has a fourth impurity concentration. An ohmic contact is made to the anode and a Schottky contact is made to the cathode. The fourth impurity concentration is less than the first, second and third impurity concentrations.
    Type: Application
    Filed: April 22, 2008
    Publication date: December 4, 2008
    Applicant: Intersil Americas Inc.
    Inventors: Dev Alok Girdhar, Michael David Church
  • Publication number: 20080296721
    Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
    Type: Application
    Filed: September 4, 2007
    Publication date: December 4, 2008
    Applicant: INTERSIL AMERICAS INC.
    Inventors: Dev Alok Girdhar, Michael David Church, Alexander Kalnitsky
  • Patent number: 6921690
    Abstract: An EPROM structure includes a NMOS transistor integrated with a capacitor. The terminal names of the NMOS transistor follow the conventional nomenclature: drain, source, body and gate. The gate of the NMOS transistor is connected directly and exclusively to one of the capacitor plates. In this configuration, the gate is now referred to as the “floating gate”. The remaining side of the capacitor is referred to as the “control gate”.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: July 26, 2005
    Assignee: Intersil Americas Inc.
    Inventor: Michael David Church
  • Patent number: 6621116
    Abstract: An EPROM structure includes a NMOS transistor integrated with a capacitor. The terminal names of the NMOS transistor follow the conventional nomenclature: drain, source, body and gate. The gate of the NMOS transistor is connected directly and exclusively to one of the capacitor plates. In this configuration, the gate is now referred to as the “floating gate”. The remaining side of the capacitor is referred to as the “control gate”.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: September 16, 2003
    Inventor: Michael David Church