Patents by Inventor Michael David McGehee

Michael David McGehee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11586089
    Abstract: The present disclosure is directed toward an electrodeposition-based dynamic glass element comprising an electrolyte that includes an aqueous solvent and an additive, wherein the electrolyte is stable over a temperature range that is greater than the stable temperature range of the aqueous solvent alone. In some embodiments, the freezing point of the electrolyte is lowered by its inclusion of the additive. Additives suitable for use in accordance with the present disclosure include alcohols, metal salts, sugars, cryoprotectants, and the like. In some cases, the freezing point of the aqueous-solvent-based electrolyte is lowered from 0° C. to ?40° C. by virtue of the inclusion of the additive. In some cases, the maximum stable temperature of the electrolyte is increased from 100° C. to 110° C. by virtue of the inclusion of the additive.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: February 21, 2023
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventors: Christopher J. Barile, Michael David McGehee, Daniel J. Slotcavage
  • Patent number: 11292029
    Abstract: The present disclosure enables high contrast, fast, uniform, and color-neutral dynamic-glass elements based on uniform and reversible electrodeposition of metals a surface of the element. Elements in accordance with the present disclosure include a surface-modified transparent-conductor-based window electrode, wherein the surface modification of the window electrode includes a nucleation layer that is anchored to the transparent conductor via a non-metallic adhesion layer. In some embodiments, a plurality of traces is disposed on and electrically connected to the window electrode to reduce the voltage drop across the total area of the element, where the traces have a core made of a low-resistivity material.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: April 5, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher J. Barile, Daniel J. Slotcavage, Michael David McGehee, Tyler S. Hernandez, Michael T. Strand
  • Patent number: 11296244
    Abstract: A perovskite-based solar cell comprising a transparent electrode disposed on a buffer layer that protects the perovskite from damage during the deposition of the electrode is disclosed. The buffer material is deposited using either low-temperature atomic-layer deposition, chemical-vapor deposition, or pulsed chemical-vapor deposition. In some embodiments, the perovskite material is operative as an absorption layer in a multi-cell solar-cell structure. In some embodiments, the perovskite material is operative as an absorption layer in a single junction solar cell structure.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: April 5, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kevin Alexander Bush, Axel F Palmstrom, Michael David McGehee, Stacey F Bent
  • Patent number: 11158828
    Abstract: A buffer layer for protecting an organic layer during high-energy deposition of an electrically conductive layer is disclosed. Buffer layers in accordance with the present invention are particularly well suited for use in perovskite-based single-junction solar cells and double-junction solar cell structures that include at least one perovskite-based absorbing layer. In some embodiments, the buffer layer comprises a layer of oxide-based nanoparticles that is formed using solution-state processing, in which a solution comprising the nanoparticles and a volatile solvent is spin coated onto a structure that includes the organic layer. The solvent is subsequently removed in a low-temperature process that does not degrade the organic layer.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: October 26, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kevin Alexander Bush, Colin David Bailie, Michael David McGehee, Tomas Leijtens
  • Publication number: 20200363690
    Abstract: The present disclosure is directed toward an electrodeposition-based dynamic glass element comprising an electrolyte that includes an aqueous solvent and an additive, wherein the electrolyte is stable over a temperature range that is greater than the stable temperature range of the aqueous solvent alone. In some embodiments, the freezing point of the electrolyte is lowered by its inclusion of the additive. Additives suitable for use in accordance with the present disclosure include alcohols, metal salts, sugars, cryoprotectants, and the like. In some cases, the freezing point of the aqueous-solvent-based electrolyte is lowered from 0° C. to ?40° C. by virtue of the inclusion of the additive. In some cases, the maximum stable temperature of the electrolyte is increased from 100° C. to 110° C. by virtue of the inclusion of the additive.
    Type: Application
    Filed: November 16, 2018
    Publication date: November 19, 2020
    Inventors: Christopher J. BARILE, Michael David MCGEHEE, Daniel J. SLOTCAVAGE
  • Publication number: 20200142273
    Abstract: The present disclosure enables high contrast, fast, uniform, and color-neutral dynamic-glass elements based on uniform and reversible electrodeposition of metals a surface of the element. Elements in accordance with the present disclosure include a surface-modified transparent-conductor-based window electrode, wherein the surface modification of the window electrode includes a nucleation layer that is anchored to the transparent conductor via a non-metallic adhesion layer. In some embodiments, a plurality of traces is disposed on and electrically connected to the window electrode to reduce the voltage drop across the total area of the element, where the traces have a core made of a low-resistivity material.
    Type: Application
    Filed: July 19, 2018
    Publication date: May 7, 2020
    Inventors: Christopher J. BARILE, Daniel J. SLOTCAVAGE, Michael David MCGEHEE, Tyler S. HERNANDEZ, Michael T. STRAND
  • Publication number: 20200136072
    Abstract: A buffer layer for protecting an organic layer during high-energy deposition of an electrically conductive layer is disclosed. Buffer layers in accordance with the present invention are particularly well suited for use in perovskite-based single-junction solar cells and double-junction solar cell structures that include at least one perovskite-based absorbing layer. In some embodiments, the buffer layer comprises a layer of oxide-based nanoparticles that is formed using solution-state processing, in which a solution comprising the nanoparticles and a volatile solvent is spin coated onto a structure that includes the organic layer. The solvent is subsequently removed in a low-temperature process that does not degrade the organic layer.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 30, 2020
    Inventors: Kevin Alexander BUSH, Colin David BAILIE, Michael David MCGEHEE, Tomas LEIJTENS
  • Patent number: 10535791
    Abstract: A 2-terminal multi-junction solar cell having a thin film of metal halide semiconductor as the top solar-cell material and crystalline silicon as the bottom solar-cell material. In the illustrative embodiment, the top solar-cell material is a perovskite of the form AM(IxH1-x)3, where A is a cation, preferably methylammonium (CH3NH3), formamidinium ([R2N—CH?NR2]+), or cesium; M is metal, preferably Pb, Sn, Ge; H is a halide, preferably Br or Cl; and x=iodine fraction, in the range of 0 to 1, inclusive. The integration of the two solar-cell materials is enabled by the use of a tunnel junction composed of indirect band-gap material.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 14, 2020
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Massachusetts Institute of Technology
    Inventors: Jonathan P. Mailoa, Colin David Bailie, Eric Carl Johlin, Michael David McGehee, Tonio Buonassisi
  • Patent number: 10522774
    Abstract: A buffer layer for protecting an organic layer during high-energy deposition of an electrically conductive layer is disclosed. Buffer layers in accordance with the present invention are particularly well suited for use in perovskite-based single-junction solar cells and double-junction solar cell structures that include at least one perovskite-based absorbing layer. In some embodiments, the buffer layer comprises a layer of oxide-based nanoparticles that is formed using solution-state processing, in which a solution comprising the nanoparticles and a volatile solvent is spin coated onto a structure that includes the organic layer. The solvent is subsequently removed in a low-temperature process that does not degrade the organic layer.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: December 31, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kevin Alexander Bush, Colin David Bailie, Michael David McGehee, Tomas Leijtens
  • Publication number: 20180309077
    Abstract: A buffer layer for protecting an organic layer during high-energy deposition of an electrically conductive layer is disclosed. Buffer layers in accordance with the present invention are particularly well suited for use in perovskite-based single-junction solar cells and double-junction solar cell structures that include at least one perovskite-based absorbing layer. In some embodiments, the buffer layer comprises a layer of oxide-based nanoparticles that is formed using solution-state processing, in which a solution comprising the nanoparticles and a volatile solvent is spin coated onto a structure that includes the organic layer. The solvent is subsequently removed in a low-temperature process that does not degrade the organic layer.
    Type: Application
    Filed: October 21, 2016
    Publication date: October 25, 2018
    Inventors: Kevin Alexander BUSH, Colin David BAILIE, Michael David MCGEHEE, Tomas LEIJTENS
  • Publication number: 20170040557
    Abstract: A solar-cell module comprising a tandem solar cell and a controller that substantially optimizes the power output the tandem solar cell is disclosed. The tandem solar cell includes a first solar cell having a first energy bandgap and a second solar cell having a second energy bandgap, where the first and second solar cells are arranged such that light not absorbed by the first solar cell passes through it to the second solar cell to be absorbed. The controller controls an electrical parameter, such as current or voltage, of at least one of the first and second solar cells such that the electrical parameter is equal in both cells, thereby substantially optimizing the output power of the tandem solar cell.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 9, 2017
    Inventors: Colin Bailie, Timothy Matthew Burke, Michael David McGehee
  • Patent number: 9564593
    Abstract: A solar cell includes a light-absorbing layer comprising a 2d-perovskite.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: February 7, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hemamala Indivari Karunadasa, Ian Smith, Michael David McGehee
  • Publication number: 20160163904
    Abstract: A 2-terminal multi-junction solar cell having a thin film of metal halide semiconductor as the top solar-cell material and crystalline silicon as the bottom solar-cell material. In the illustrative embodiment, the top solar-cell material is a perovskite of the form AM(IxH1-x)3, where A is a cation, preferably methylammonium (CH3NH3), formamidinium ([R2N—CH?NR2]+), or cesium; M is metal, preferably Pb, Sn, Ge; H is a halide, preferably Br or Cl; and x=iodine fraction, in the range of 0 to 1, inclusive. The integration of the two solar-cell materials is enabled by the use of a tunnel junction composed of indirect band-gap material.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 9, 2016
    Inventors: Jonathan P. Mailoa, Colin David Bailie, Eric Carl Johlin, Michael David McGehee, Tonio Buonassisi
  • Publication number: 20150357591
    Abstract: A solar cell includes a light-absorbing layer comprising a 2d-perovskite.
    Type: Application
    Filed: June 8, 2015
    Publication date: December 10, 2015
    Inventors: Hemamala Indivari Karunadasa, Ian Smith, Michael David McGehee
  • Patent number: 8895844
    Abstract: A method for forming a solar cell having a plasmonic back reflector is disclosed. The method includes the formation of a nanoimprinted surface on which a metal electrode is conformally disposed. The surface structure of the nanoimprinted surface gives rise to a two-dimensional pattern of nanometer-scale features in the metal electrode enabling these features to collectively form the plasmonic back reflector.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: November 25, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: I-Kang Ding, Jia Zhu, Yi Cui, Michael David McGehee
  • Publication number: 20120125430
    Abstract: A method for forming a solar cell having a plasmonic back reflector is disclosed. The method includes the formation of a nanoimprinted surface on which a metal electrode is conformally disposed. The surface structure of the nanoimprinted surface gives rise to a two-dimensional pattern of nanometer-scale features in the metal electrode enabling these features to collectively form the plasmonic back reflector.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 24, 2012
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: I-Kang Ding, Jia Zhu, Yi Cui, Michael David McGehee