Patents by Inventor Michael David Rinehart

Michael David Rinehart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9545915
    Abstract: A method includes utilizing navigation data from a navigation system to segment a route to be travelled by a travelling vehicle into segments each having a road grade different than neighboring segments. The method further includes discharging a battery of the vehicle as the vehicle travels along an initial segment of the route according to a state-of-charge (SoC) set-point based on the road grade of the initial segment and a variable representative of the road grades of at least two other segments of the route.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: January 17, 2017
    Assignees: Ford Global Technologies, LLC, Massachusetts Institute of Technology
    Inventors: Anthony Mark Phillips, Georgia-Evangelia Katsargyri, Ming Lang Kuang, Ilya Vladimir Kolmanovsky, John Ottavio Michelini, Munther Abdullah Dahleh, Michael David Rinehart
  • Publication number: 20140095003
    Abstract: A method includes utilizing navigation data from a navigation system to segment a route to be travelled by a travelling vehicle into segments each having a road grade different than neighboring segments. The method further includes discharging a battery of the vehicle as the vehicle travels along an initial segment of the route according to a state-of-charge (SoC) set-point based on the road grade of the initial segment and a variable representative of the road grades of at least two other segments of the route.
    Type: Application
    Filed: December 3, 2013
    Publication date: April 3, 2014
    Applicants: Massachusetts Institute of Technology, Ford Global Technologies, LLC
    Inventors: Anthony Mark Phillips, Georgia-Evangelia Katsargyri, Ming Lang Kuang, Ilya Vladimir Kolmanovsky, John Ottavio Michelini, Munther Abdullah Dahleh, Michael David Rinehart
  • Patent number: 8612077
    Abstract: A path-dependent control of a hybrid electric vehicle (HEV) includes segmenting an original route into segments. A virtual route based on the remaining portion of the original route is generated once the HEV reaches a current segment of the original route. The virtual route includes a first segment corresponding to the current segment of the original route and a last segment representing at least two other segments of the remaining portion of the original route. Battery SoC set-points for the segments of the virtual route are generated. The vehicle is controlled according to the battery SoC set-point for the first segment of the virtual route as the vehicle travels along the current segment of the original route.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: December 17, 2013
    Assignees: Massachusetts Institute of Technology, Ford Global Technologies, LLC
    Inventors: Anthony Mark Phillips, Georgia-Evangelia Katsargyri, Ming Lang Kuang, Ilya Vladimir Kolmanovsky, John Ottavio Michelini, Munther Abdullah Dahleh, Michael David Rinehart
  • Publication number: 20120010767
    Abstract: A path-dependent control of a hybrid electric vehicle (HEV) includes segmenting a route into segments, generating a sequence of battery state-of-charge (SoC) set-points for the segments, and controlling the vehicle in accordance with the battery SoC set-points as the vehicle travels along the route.
    Type: Application
    Filed: June 10, 2011
    Publication date: January 12, 2012
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Anthony Mark Phillips, Georgia-Evangelia Katsargyri, Ming Lang Kuang, Ilya Vladimir Kolmanovsky, John Ottavio Michelini, Munther Abdullah Dahleh, Michael David Rinehart
  • Publication number: 20120010768
    Abstract: A path-dependent control of a hybrid electric vehicle (HEV) includes segmenting an original route into segments. A virtual route based on the remaining portion of the original route is generated once the HEV reaches a current segment of the original route. The virtual route includes a first segment corresponding to the current segment of the original route and a last segment representing at least two other segments of the remaining portion of the original route. Battery SoC set-points for the segments of the virtual route are generated. The vehicle is controlled according to the battery SoC set-point for the first segment of the virtual route as the vehicle travels along the current segment of the original route.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 12, 2012
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Anthony Mark Phillips, Georgia-Evangelia Katsargyri, Ming Lang Kuang, Ilya Vladimir Kolmanovsky, John Ottavio Michelini, Munther Abdullah Dahleh, Michael David Rinehart