Patents by Inventor Michael David Valentine

Michael David Valentine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7061423
    Abstract: In a police radar detector, a sweep signal defines at least one first sweep signal and at least one second sweep signal with the at least one second sweep signal being seamlessly inserted into the first sweep signal so that the first sweep signal is interrupted during the second sweep signal and restored after completion of the second sweep signal so that the first sweep signal can be continued. The frequencies swept by the at least one second sweep signal are thus overswept. By assigning the frequencies swept during the at least one first sweep to the radar bands of interest and the frequencies swept during the at least one second sweep to the frequencies used in the POP mode of operation by police radar, the short bursts of energy used in the POP mode can be detected.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: June 13, 2006
    Assignee: Valentine Research, Inc.
    Inventors: Michael David Valentine, Gary Edward Carrelli, Stephen Ray Scholl
  • Patent number: 6175324
    Abstract: A novel frequency scheme for a police radar detector enables improved sweeping of the X, K, Ku and Ka radar bands. The novel frequency scheme requires two initial frequency conversions for detection of the X, K and Ka radar bands and a single initial frequency conversion for the Ku radar band with single initial frequency conversion being enabled by disabling the second mixer. During sweeping of the X, K and Ka bands, selectable, i.e., upper or lower, sideband suppression is employed to reduce undesired image sidebands and noise prior to the second frequency conversion. In addition, noise at the second IF frequency is reduced to prevent this noise from feeding through the second mixer into the second IF amplifier. During the Ku band sweep, the second mixer is bypassed and shunting of signals at the second IF frequency is disabled so that these signals enter the second IF amplifier.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: January 16, 2001
    Assignee: Valentine Research, Inc.
    Inventors: Michael David Valentine, Stephen Ray Scholl, Harry Joe Gould
  • Patent number: 5917441
    Abstract: A frequency scheme for a police radar detector enables the K band and the K.sub.a band to be scanned during a single sweep of a local oscillator which drives a mixer at its fundamental operating mode to produce intermediate frequency signals around 5 Ghz. The frequency scheme simultaneously activates two or four frequency conversion paths in the police radar detector. Accordingly, a radar warning alarm can be given upon detection of radar signals in any one of the frequency conversion paths. The ambiguity as to which one of the two or four frequency conversion paths is receiving a detected radar signal is resolved by applying first and second modulation signals to first and second local oscillators, respectively, so that the radar band of the detected radar signal can also be included within the radar warning alarm. The first and second modulation signals are in quadrature to one another and quadrature correlation is used to determine which frequency conversion path is receiving a radar signal.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: June 29, 1999
    Assignee: Valentine Research, Inc.
    Inventors: Michael David Valentine, Clarence Richard Groth, Stephen Ray Scholl
  • Patent number: 5900832
    Abstract: An input stage for a police radar detector includes a single mixer together with at least one preamplifier to detect radar signals in the X, K and K.sub.a bands. A preamplifier may be used on the X band alone, the K band alone, the K.sub.a band alone, the X and K bands or the X, K and K.sub.a bands. The use of these preamplifiers provides better noise figure; however, multiple responses cannot be scanned at the same time in bands utilizing a preamplifier with sufficient selectivity to reduce noise in its respective image bands to tolerable levels so that some or all of the receiver responses are swept independently with the preamplifier or preamplifiers being enabled one at a time as appropriate for each band being scanned. Since more sweep time is required when multiple responses are no longer swept simultaneously, a currently preferred form of the input stage couples the K.sub.a band signals to a single mixer through a preamplifier which permits multiple responses to be swept in the K.sub.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: May 4, 1999
    Assignee: Valentine Research, Inc.
    Inventors: Michael David Valentine, Clarence Richard Groth, Stephen Ray Scholl
  • Patent number: 5856801
    Abstract: An input stage of a police radar detector is configured so that a near end of a mixer is coupled to an antenna for receiving high frequency signals and a far end of the mixer is coupled to the antenna for receiving low frequency signals. A local oscillator and an intermediate frequency amplifier are also coupled to the far end of the mixer. The low frequency signals, X band police radar signals, are coupled to the far end of the mixer through a band rejection filter, which serves as a diplexer, a preamplifier and a first bandpass filter. The local oscillator is coupled to the far end of the mixer through a second bandpass filter and the far end of the mixer is coupled to the intermediate frequency amplifier through a low pass filter. The high frequency signals, K band and K.sub.a band signals, are coupled to the near end of the mixer from the antenna through a high pass filter.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: January 5, 1999
    Assignee: Valentine Research, Inc.
    Inventors: Michael David Valentine, Clarence Richard Groth, Stephen Ray Scholl
  • Patent number: 5852417
    Abstract: A radar detector suppresses nuisance alerts due to detection of a third harmonic of a common LO signal of other radar detectors by detecting a second harmonic of the offending LO signal. If a detected radar signal in the K.sub.a band is of a frequency within a suspect range corresponding to possible third harmonic spurious LO signals, a determination is made as to whether a potential alert blocking signal around the second harmonic of a nominal 11.55 Ghz signal is also present. In the illustrated embodiment, the second harmonic alert blocking signal which is checked has a frequency which is 2/3 the frequency of the detected K.sub.a signal .+-. a guard band of, for example .+-.40 Mhz, and is within a range of frequencies from about 22.813 Ghz to about 23.8 Ghz. If no blocking signal has been detected within about 10 seconds before or within three sweeps after detection of the K.sub.a band signal in the suspect range, the detected K.sub.a band signal is reported.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: December 22, 1998
    Assignee: Valentine Research, Inc.
    Inventors: Michael David Valentine, Clarence Richard Groth, Stephen Ray Scholl
  • Patent number: 3955142
    Abstract: A single-sideband radiotelephone system includes a single-sideband transmitter which initially broadcasts two frequency-spaced tones simultaneously for a predetermined time interval, and thereafter broadcasts the two tones alternately in a unique code pattern to access a predetermined receiver. Each single-sideband receiver in the system includes a pair of detectors each having a narrow bandpass, the center frequencies of which are spaced apart by the difference in frequency of the transmitted tones. The center frequencies of the detectors are simultaneously varied relative to the initial two-tone broadcast while maintaining the frequency differential therebetween; and simultaneous detection of both tones will terminate the frequency varying mode of operation. The subsequently transmitted unique code pattern is then sensed by the detectors, the code pattern decoded, and the selected receiver is enabled to receive any subsequently broadcasted information.
    Type: Grant
    Filed: March 6, 1975
    Date of Patent: May 4, 1976
    Assignee: R. L. Drake Company
    Inventors: Varn Richard Frank, Ronald Eugene Wysong, Michael David Valentine