Patents by Inventor Michael Detamore

Michael Detamore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11432922
    Abstract: An implant can include a plurality of polymeric fibers associated together into a fibrous body. The fibrous body is capable of being shaped to fit a tracheal defect and capable of being secured in place by suture or by bioadhesive. The fibrous body can have aligned fibers (e.g., circumferentially aligned) or unaligned fibers. The fibrous body can be electrospun. The fibrous body can have a first characteristic in a first gradient distribution across at least a portion of the fibrous body. The fibrous body can include one or more structural reinforcing members, such as ribbon structural reinforcing members, which can be embedded in the plurality of fibers. The fibrous body can include one or more structural reinforcing members bonded to the fibers with liquid polymer as an adhesive, the liquid polymer having a substantially similar composition of the fibers.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: September 6, 2022
    Assignees: The University of Kansas, The Children's Mercy Hospital
    Inventors: Michael Detamore, Lindsey Ott, Robert Weatherly
  • Publication number: 20220054255
    Abstract: An implant can include a plurality of polymeric fibers associated together into a fibrous body. The fibrous body is capable of being shaped to fit a tracheal defect and capable of being secured in place by suture or by bioadhesive. The fibrous body can have aligned fibers (e.g., circumferentially aligned) or unaligned fibers. The fibrous body can be electrospun. The fibrous body can have a first characteristic in a first gradient distribution across at least a portion of the fibrous body. The fibrous body can include one or more structural reinforcing members, such as ribbon structural reinforcing members, which can be embedded in the plurality of fibers. The fibrous body can include one or more structural reinforcing members bonded to the fibers with liquid polymer as an adhesive, the liquid polymer having a substantially similar composition of the fibers.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Applicants: The University of Kansas, The Children's Mercy Hospital
    Inventors: Michael Detamore, Lindsey Ott, Robert Weatherly
  • Patent number: 11000630
    Abstract: An implantable hydrogel precursor composition can include: a cross-linkable polymer matrix that is biocompatible; and a plurality of polymer particles in the cross-linkable polymer matrix. The cross-linkable polymer matrix can include a cross-linkable hyaluronic acid polymer that has cross-linkable functional groups. The hyaluronic acid polymer can be a methacrylated hyaluronic acid polymer. The methacrylated hyaluronic acid polymer can have a molecular weight from about 500 kDa to about 1.8 MDa. The polymer particles can include a cross-linked hyaluronic acid. The cross-linkable polymer matrix having the polymer particles has a yield stress. The cross-linkable polymer matrix having the polymer particles has shape retention at physiological temperatures. The composition can include live cells in the cross-linkable polymer matrix. The composition can include a biologically active agent in the cross-linkable polymer matrix.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: May 11, 2021
    Assignee: THE UNIVERSITY OF KANSAS
    Inventors: Michael Detamore, Emily Beck, Stevin Gehrke, Cory Berkland
  • Patent number: 10744228
    Abstract: An implantable composition can include methacrylated solubilized devitalized cartilage (MeSDVC) with or without devitalized cartilage (DVC) particles. These compositions can be hydrogel precursors. After implantation, the MeSDVC may be crosslinked so as to form a hydrogel. The crosslinked hydrogel can include the DVC particles. A hydrogel precursor matrix (e.g., not crosslinked) can include a crosslinkable substance that can be crosslinked into a hydrogel, where DVC particles are included in the precursor matrix. The hydrogel precursor matrix can be located in a tissue defect site, such as a hole or recess in a cartilage or bone, and then crosslinked into a hydrogel that has the DVC particles therein.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: August 18, 2020
    Assignee: The University of Kansas
    Inventors: Michael Detamore, Emily Beck
  • Patent number: 10722614
    Abstract: The present invention is related to compositions comprising decellularized cartilage tissue powder in the forms of paste, putty, hydrogel, and scaffolds, methods of making compositions, and methods of using these compositions for treating osteochondral defects and full- or partial-thickness cartilage defects.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: July 28, 2020
    Assignees: The University of Kansas, The Children's Mercy Hospital
    Inventors: Michael Detamore, Amanda Renth, Amanda Sutherland, Emily Beck, Richard Hopkins, Gabriel Converse
  • Publication number: 20200015962
    Abstract: An implant can include a plurality of polymeric fibers associated together into a fibrous body. The fibrous body is capable of being shaped to fit a tracheal defect and capable of being secured in place by suture or by bioadhesive. The fibrous body can have aligned fibers (e.g., circumferentially aligned) or unaligned fibers. The fibrous body can be electrospun. The fibrous body can have a first characteristic in a first gradient distribution across at least a portion of the fibrous body. The fibrous body can include one or more structural reinforcing members, such as ribbon structural reinforcing members, which can be embedded in the plurality of fibers. The fibrous body can include one or more structural reinforcing members bonded to the fibers with liquid polymer as an adhesive, the liquid polymer having a substantially similar composition of the fibers.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 16, 2020
    Applicants: The University of Kansas, Children's Mercy Hospital
    Inventors: Michael Detamore, Lindsey Ott, Robert Weatherly
  • Publication number: 20190314554
    Abstract: An implantable hydrogel precursor composition can include: a cross-linkable polymer matrix that is biocompatible; and a plurality of polymer particles in the cross-linkable polymer matrix. The cross-linkable polymer matrix can include a cross-linkable hyaluronic acid polymer that has cross-linkable functional groups. The hyaluronic acid polymer can be a methacrylated hyaluronic acid polymer. The methacrylated hyaluronic acid polymer can have a molecular weight from about 500 kDa to about 1.8 MDa. The polymer particles can include a cross-linked hyaluronic acid. The cross-linkable polymer matrix having the polymer particles has a yield stress. The cross-linkable polymer matrix having the polymer particles has shape retention at physiological temperatures. The composition can include live cells in the cross-linkable polymer matrix. The composition can include a biologically active agent in the cross-linkable polymer matrix.
    Type: Application
    Filed: May 31, 2019
    Publication date: October 17, 2019
    Applicant: THE UNIVERSITY OF KANSAS
    Inventors: Michael DETAMORE, Emily BECK, Stevin GEHRKE, Cory BERKLAND
  • Patent number: 10335515
    Abstract: An implantable hydrogel precursor composition can include: a cross-linkable polymer matrix that is biocompatible; and a plurality of polymer particles in the cross-linkable polymer matrix. The cross-linkable polymer matrix can include a cross-linkable hyaluronic acid polymer that has cross-linkable functional groups. The hyaluronic acid polymer can be a methacrylated hyaluronic acid polymer. The methacrylated hyaluronic acid polymer can have a molecular weight from about 500 kDa to about 1.8 MDa. The polymer particles can include a cross-linked hyaluronic acid. The cross-linkable polymer matrix having the polymer particles has a yield stress. The cross-linkable polymer matrix having the polymer particles has shape retention at physiological temperatures. The composition can include live cells in the cross-linkable polymer matrix. The composition can include a biologically active agent in the cross-linkable polymer matrix.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: July 2, 2019
    Assignee: The University of Kansas
    Inventors: Michael Detamore, Emily Beck, Stevin Gehrke, Cory Berkland
  • Patent number: 10246681
    Abstract: A method of transforming human cells into mechanosensory hair cells (MHCs), such as inner hear hair cells in the cochlea and vestibular organs, can include: causing human Wharton's jelly cells (hWJCs) to increase expression of or biological function of HATH1 so as to transform the hWJCs into MHCs. The method can include; administering a nucleic acid that encodes HATH1 to the hWJCs; causing inhibited expression of or biological function of HES1 and/or HES5 in the hWJCs; administering a nucleic acid that inhibits HES1 and/or a nucleic acid that inhibits HES5 to the hWJCs; causing inhibited expression of or biological function of HES1 and/or HES5 in the WJCs by administering a nucleic acid that inhibits HES1 and/or a nucleic acid that inhibits HES5; nucleic acids are administered includes a sequence of SEQ ID NO: 2, SEQ ID NO: 3, and/or SEQ ID NO: 4.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: April 2, 2019
    Assignee: The University of Kansas
    Inventors: Adam J Mellott, Michael Detamore, Hinrich Staecker
  • Patent number: 9814802
    Abstract: A method of differentiating cells into CK19-positive cells capable of producing hair follicle-like and hair structure-like can include: providing a tissue scaffold; seeding cells into the scaffold, the cells being capable of differentiation; incubating the scaffold having the cells in a cell growth media; and incubating the scaffold having the cells in an osteogenic differentiation medium sufficient for CK19-positive cells to be generated in the scaffold. The tissue scaffold can be a decellularized Whartons' jelly matrix. The cell growth media excludes osteogenic differentiation components: dexamethasone, ?-glycerophosphate, 1?,25-hydroxyvitamin D3, and ascorbic acid 2-phosphate. The osteogenic differentiation medium includes the osteogenic differentiation components. The cells can be mesenchymal cells, such as WJMSCs.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: November 14, 2017
    Assignees: The University of Kansas, The Children's Mercy Hospital
    Inventors: Omar Aljitawi, Richard Hopkins, Michael Detamore, Rama Garimella
  • Publication number: 20170067018
    Abstract: A method of transforming human cells into mechanosensory hair cells (MHCs), such as inner hear hair cells in the cochlea and vestibular organs, can include: causing human Wharton's jelly cells (hWJCs) to increase expression of or biological function of HATH1 so as to transform the hWJCs into MHCs. The method can include; administering a nucleic acid that encodes HATH1 to the hWJCs; causing inhibited expression of or biological function of HES1 and/or HES5 in the hWJCs; administering a nucleic acid that inhibits HES1 and/or a nucleic acid that inhibits HES5 to the hWJCs; causing inhibited expression of or biological function of HES1 and/or HES5 in the WJCs by administering a nucleic acid that inhibits HES1 and/or a nucleic acid that inhibits HES5; nucleic acids are administered includes a sequence of SEQ ID NO: 2, SEQ ID NO: 3, and/or SEQ ID NO: 4.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 9, 2017
    Inventors: Adam J. Mellott, Michael Detamore, Hinrich Staecker
  • Publication number: 20170065742
    Abstract: An implantable composition can include methacrylated solubilized devitalized cartilage (MeSDVC) with or without devitalized cartilage (DVC) particles. These compositions can be hydrogel precursors. After implantation, the MeSDVC may be crosslinked so as to form a hydrogel. The crosslinked hydrogel can include the DVC particles. A hydrogel precursor matrix (e.g., not crosslinked) can include a crosslinkable substance that can be crosslinked into a hydrogel, where DVC particles are included in the precursor matrix. The hydrogel precursor matrix can be located in a tissue defect site, such as a hole or recess in a cartilage or bone, and then crosslinked into a hydrogel that has the DVC particles therein.
    Type: Application
    Filed: September 1, 2016
    Publication date: March 9, 2017
    Inventors: Michael Detamore, Emily Beck
  • Patent number: 9512400
    Abstract: A method of transforming human cells into mechanosensory hair cells (MHCs), such as inner hear hair cells in the cochlea and vestibular organs, can include: causing human Wharton's jelly cells (hWJCs) to increase expression of or biological function of HATH1 so as to transform the hWJCs into MHCs. The method can include; administering a nucleic acid that encodes HATH1 to the hWJCs; causing inhibited expression of or biological function of HES1 and/or HES5 in the hWJCs; administering a nucleic acid that inhibits HES1 and/or a nucleic acid that inhibits HES5 to the hWJCs; causing inhibited expression of or biological function of HES1 and/or HES5 in the WJCs by administering a nucleic acid that inhibits HES1 and/or a nucleic acid that inhibits HES5; nucleic acids are administered includes a sequence of SEQ ID NO: 2, SEQ ID NO: 3, and/or SEQ ID NO: 4.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: December 6, 2016
    Assignee: The University of Kansas
    Inventors: Adam J. Mellott, Michael Detamore, Hinrich Staecker
  • Publication number: 20160235892
    Abstract: The present invention is related to compositions comprising decellularized cartilage tissue powder in the forms of paste, putty, hydrogel, and scaffolds, methods of making compositions, and methods of using these compositions for treating osteochondral defects and full- or partial-thickness cartilage defects.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 18, 2016
    Inventors: Michael Detamore, Amanda Renth, Amanda Sutherland, Emily Beck, Richard Hopkins, Gabriel Converse
  • Publication number: 20160038643
    Abstract: An implantable hydrogel precursor composition can include: a cross-linkable polymer matrix that is biocompatible; and a plurality of polymer particles in the cross-linkable polymer matrix. The cross-linkable polymer matrix can include a cross-linkable hyaluronic acid polymer that has cross-linkable functional groups. The hyaluronic acid polymer can be a methacrylated hyaluronic acid polymer. The methacrylated hyaluronic acid polymer can have a molecular weight from about 500 kDa to about 1.8 MDa. The polymer particles can include a cross-linked hyaluronic acid. The cross-linkable polymer matrix having the polymer particles has a yield stress. The cross-linkable polymer matrix having the polymer particles has shape retention at physiological temperatures. The composition can include live cells in the cross-linkable polymer matrix. The composition can include a biologically active agent in the cross-linkable polymer matrix.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 11, 2016
    Inventors: Michael Detamore, Emily Beck, Stevin Gehrke, Cory Berkland
  • Publication number: 20150307837
    Abstract: A method of transforming human cells into mechanosensory hair cells (MHCs), such as inner hear hair cells in the cochlea and vestibular organs, can include: causing human Wharton's jelly cells (hWJCs) to increase expression of or biological function of HATH1 so as to transform the hWJCs into MHCs. The method can include; administering a nucleic acid that encodes HATH1 to the hWJCs; causing inhibited expression of or biological function of HES1 and/or HES5 in the hWJCs; administering a nucleic acid that inhibits HES1 and/or a nucleic acid that inhibits HES5 to the hWJCs; causing inhibited expression of or biological function of HES1 and/or HES5 in the WJCs by administering a nucleic acid that inhibits HES1 and/or a nucleic acid that inhibits HES5; nucleic acids are administered includes a sequence of SEQ ID NO: 2, SEQ ID NO: 3, and/or SEQ ID NO: 4.
    Type: Application
    Filed: April 28, 2015
    Publication date: October 29, 2015
    Applicant: THE UNIVERSITY OF KANSAS
    Inventors: Adam J. Mellott, Michael Detamore, Hinrich Staecker
  • Publication number: 20150230918
    Abstract: An implant can include a plurality of polymeric fibers associated together into a fibrous body. The fibrous body is capable of being shaped to fit a tracheal defect and capable of being secured in place by suture or by bioadhesive. The fibrous body can have aligned fibers (e.g., circumferentially aligned) or unaligned fibers. The fibrous body can be electrospun. The fibrous body can have a first characteristic in a first gradient distribution across at least a portion of the fibrous body. The fibrous body can include one or more structural reinforcing members, such as ribbon structural reinforcing members, which can be embedded in the plurality of fibers. The fibrous body can include one or more structural reinforcing members bonded to the fibers with liquid polymer as an adhesive, the liquid polymer having a substantially similar composition of the fibers.
    Type: Application
    Filed: August 15, 2012
    Publication date: August 20, 2015
    Applicant: THE UNIVERSITY OF KANSAS
    Inventors: Michael Detamore, Lindsey Ott, Robert Weatherly
  • Publication number: 20140200678
    Abstract: Methods can prepare tissue engineering scaffolds that include a plurality of biocompatible core/shell microspheres linked together to form a three-dimensional matrix. The matrix can include a plurality of pores for growing cells. The biocompatible microspheres can include first and second sets of microspheres. The first set of microspheres can have a first characteristic, and a first predetermined spatial distribution with respect to the three-dimensional matrix. The second set of microspheres can have a second characteristic that is different from the first characteristic, and a second predetermined spatial distribution that is different from the first predetermined spatial distribution with respect to the three-dimensional matrix.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 17, 2014
    Applicant: THE UNIVERSITY OF KANSAS
    Inventors: Michael Detamore, Vineet Gupta, Neethu Mohan, Cory Berkland
  • Patent number: 8715983
    Abstract: The present invention is directed to a hydrogel network comprised of a physically cross-linked polymer and a chemically cross-linked polymer or physically entangled copolymer containing living cells, such as chondrocytes, encapsulated therein. In a preferred aspect, the physically cross-linked polymer is selected from the group consisting of thermally gelling polysaccharides and proteins, such as agarose or gelatin, and the chemically cross-linked or physically entangled polymer is synthesized from a water-soluble vinyl monomer, either as a homopolymer or copolymer, such as polyethylene glycol diacrylate (“PEG-DA”) and 2-hydroxyethyl methacrylate (“HEMA”).
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 6, 2014
    Assignee: University of Kansas
    Inventors: Michael Detamore, Stevin H. Gehrke
  • Patent number: 8669107
    Abstract: Methods can prepare tissue engineering scaffolds that include a plurality of biocompatible microspheres linked together to form a three-dimensional matrix. The matrix can include a plurality of pores for growing cells. The biocompatible microspheres can include first and second sets of microspheres. The first set of microspheres can have a first characteristic, and a first predetermined spatial distribution with respect to the three-dimensional matrix. The second set of microspheres can have a second characteristic that is different from the first characteristic, and a second predetermined spatial distribution that is different from the first predetermined spatial distribution with respect to the three-dimensional matrix.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: March 11, 2014
    Assignee: The University of Kansas
    Inventors: Michael Detamore, Milind Singh, Aaron M. Scurto, Cory Berkland