Patents by Inventor Michael Downs

Michael Downs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220129224
    Abstract: An example method includes maintaining, by a processing resource associated with a finisher communicatively coupled to a printer, an interpage delay table, the interpage delay table storing an interpage delay value for each of a plurality of page attribute combinations. The method further includes processing, by the finisher, a job based at least in part on a particular interpage delay value stored in the interpage delay table for an identified page attribute combination.
    Type: Application
    Filed: July 18, 2019
    Publication date: April 28, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Cristopher Royce Jansson, Elliott Michael Downing
  • Publication number: 20210400350
    Abstract: A context-driven voice-control system and method for enabling users to control customer service activities related to live broadcast programming, recorded programming, streaming programming, and on-demand programming using vocal selection by the user. The context-driven voice-control system and method may also enable users to control one or more of account management activities using vocal selection by the user, authentication to authorize changes to their account using vocal selection by the user, and troubleshooting of equipment and system capabilities using vocal selection by the user. The context-driven voice-control system and method dynamically generates and presents a list of available control and support pathways to a user based on the user attributes and the voice control requests.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 23, 2021
    Inventors: Raymond F. Watkins, III, Adam Porter, David Michael Downing, Chad Mullen, Jordan Oyler Nhem, Tanya Mazur
  • Patent number: 11130779
    Abstract: Provided herein are deuterated compounds and compositions useful in increasing PPAR? activity. The compounds have a formula where L5 comprises at least one deuterium. Exemplary species include The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 28, 2021
    Assignee: The Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes
  • Publication number: 20210291567
    Abstract: In an example of a method for adjusting a print speed, a base throughput of a printing device is determined for a page gap and a print speed for a current page being constant. A calculated throughput for a number of upcoming pages is determined based on extra time for speeding up the print speed. The print speed is adjusted based on the base throughput and the calculated throughput.
    Type: Application
    Filed: December 11, 2018
    Publication date: September 23, 2021
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Elliott Michael Downing, Robert Matthew Yraceburu, Catrina Marcia Klossner
  • Publication number: 20210253549
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Application
    Filed: January 29, 2021
    Publication date: August 19, 2021
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Publication number: 20210147365
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Application
    Filed: September 1, 2020
    Publication date: May 20, 2021
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F.W. Keana, Christopher Liddle
  • Patent number: 10920199
    Abstract: The invention generally features compositions comprising induced pluripotent stem cell progenitors (also termed reprogramming progenitor cells) and methods of isolating such cells. The invention also provides compositions comprising induced pluripotent stem cells (iPSCs) derived from such progenitor cells. Induced pluripotent stem cell progenitors generate iPSCs at high efficiency. In particular embodiments the invention is predicated upon increased expression of an estrogen related receptor and changes in the oxidative and glycolytic pathways.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: February 16, 2021
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Ronald Evans, Michael Downes, Yasuyuki Kida, Teruhisa Kawamura, Zong Wei, Ruth T. Yu, Annette R. Atkins
  • Publication number: 20210032303
    Abstract: The present disclosure provides FGF1 mutant proteins, which selectively bind to/activate FGFR1b. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. Methods of using the disclosed FGF1 mutants to reduce blood glucose in a mammal and treat a metabolic disorder are provided.
    Type: Application
    Filed: July 15, 2020
    Publication date: February 4, 2021
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sihao Liu, Ruth T. Yu
  • Patent number: 10906885
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: February 2, 2021
    Assignees: Mitobridge, Inc., The Salk Institute for Biological Studies
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Patent number: 10815203
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: October 27, 2020
    Assignees: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F. W. Keana, Christopher Liddle
  • Publication number: 20200216490
    Abstract: Provided herein are deuterated compounds and compositions useful in increasing PPAR? activity. The compounds have a formula where L5 comprises at least one deuterium. Exemplary species include The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Application
    Filed: December 17, 2019
    Publication date: July 9, 2020
    Applicant: The Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes
  • Patent number: 10695404
    Abstract: Methods of using FGF1 analogs, such as FGF1 mutant proteins having an N-terminal deletion, point mutation(s), or combinations thereof, to reduce blood glucose levels in subjects with steroid-induced diabetes, hypercortisolemia, or diabetes due to treatment with an antipsychotic agent, are provided. Such mutant FGF1 proteins can be part of a chimeric protein that includes a ?-Klotho-binding protein, an FGFR1-binding protein, a ?-Klotho-binding protein and a FGFR1-binding protein, a C-terminal region from FGF19 or FGF21.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: June 30, 2020
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Ruth T. Yu
  • Publication number: 20200190019
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Applicants: Salk Institute for Biological Studies, Mitobridge, Inc.
    Inventors: Ronald M. Evans, Michael Downes, Thomas J. Baiga, Joseph P. Noel, Emi Kanakubo Embler, Weiwei Fan, John F.W. Keana, Mark G. Bock, Authur F. Kluge, Mike A. Patane
  • Publication number: 20200157074
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Application
    Filed: November 13, 2019
    Publication date: May 21, 2020
    Inventors: Michael Downes, Ronald M. Evans, Arthur Kluge, Bharat Lagu, Masanori Miura, Sunil Kumar Panigrahi, Michael Patane, Susanta Samajdar, Ramesh Senaiar, Taisuke Takahashi
  • Publication number: 20200129532
    Abstract: Methods are provided for reducing blood glucose, which utilize an agent that increases the biological activity of a vitamin D receptor (VDR) (e.g., a VDR agonist), in combination with an antagonist of bromodomain-containing protein 9 (BRD9). IN some examples, such methods treat type II diabetes.
    Type: Application
    Filed: January 8, 2020
    Publication date: April 30, 2020
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Zong Wei, Annette Atkins, Ruth T. Yu
  • Publication number: 20200123113
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Application
    Filed: September 10, 2019
    Publication date: April 23, 2020
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F.W. Keana, Christopher Liddle
  • Publication number: 20200040051
    Abstract: The present disclosure provides FGF1 mutant proteins having one or more mutations in the heparin binding domain. Such mutants may also have an N-terminal deletion, point mutation(s), or combinations thereof. In some examples, the mutant FGF1 proteins have reduced mitogenic activity. Also provided are nucleic acid molecules that encode such proteins, and vectors and cells that include such nucleic acids. The disclosed FGF1 mutants can reduce blood glucose in a mammal, and in some examples are used to treat a metabolic disorder.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 6, 2020
    Applicants: Salk Institute for Biological Studies, The Florida State University Research Foundation, Incorporated
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Ruth T. Yu, Michael Blaber, Xue Xia
  • Patent number: 10550071
    Abstract: Provided herein are compounds and compositions useful in increasing PPAR? activity. The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: February 4, 2020
    Assignees: Salk Institute for Biological Studies, Mitobridge, Inc.
    Inventors: Ronald M. Evans, Michael Downes, Thomas J. Baiga, Joseph P. Noel, Emi Kanakubo Embler, Weiwei Fan, John F. W. Keana, Mark G. Bock, Arthur F. Kluge, Mike A. Patane
  • Patent number: 10550149
    Abstract: Provided herein are deuterated compounds and compositions useful in increasing PPAR? activity. The compounds have a formula where L5 comprises at least one deuterium. Exemplary species include The compounds and compositions provided herein are useful for the treatment of PPAR? related diseases (e.g., muscular diseases, vascular disease, demyelinating disease, and metabolic diseases).
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: February 4, 2020
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes
  • Patent number: 10539572
    Abstract: The invention features compositions and methods treating or preventing for age-related insulin resistance, type 2 diabetes and related disorders. The method involves depleting fTreg cells with an anti-ST2 antibody to decrease age-related fTreg accumulation and restore insulin sensitivity, thereby treating age-related insulin resistance, type 2 diabetes and related disorders.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: January 21, 2020
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Sagar P. Bapat, Ye Zheng, Ronald Evans, Michael Downes, Annette R. Atkins, Ruth T. Yu