Patents by Inventor Michael Drummy
Michael Drummy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9933375Abstract: Disclosed is a portable non-destructive testing (NDT) instrument system that transmits spectrum data measured from a test material sample to a remotely located computer for computation of the sample's atomic element composition. The atomic element composition is subsequently transmitted back to the portable instrument for display to the operator in real time. The precision and accuracy of the compositional computation is improved by the greater processing power of the high performance remote computer. The operator of the NDT instrument may choose to use the remote computer to perform part or all of the compositional computation.Type: GrantFiled: September 25, 2015Date of Patent: April 3, 2018Assignee: Olympus Scientific Solutions Americas, Inc.Inventors: Michael Drummy, C. Tricia Liu
-
Patent number: 9683952Abstract: Disclosed is a test stand that supports and stabilizes a handheld XRF analyzer, and holds a body of sample to be tested. The test stand allows both horizontal and vertical analysis positions of the analyzer. The preferred embodiment of the test stand comprises a shielded X-ray chamber in which samples are tested and which affixes to the XRF analyzer's window via a spring loaded handle, a stabilizing base to which the analyzer's handle is situated, and a stanchion for horizontal mounting of the XRF analyzer. In the horizontal orientation, the chamber contains an adjustable platform and soil sample retainer to facilitate the positioning of the sample to be tested. The stanchion can be stored under the base.Type: GrantFiled: December 8, 2014Date of Patent: June 20, 2017Assignee: Olympus Scientific Solutions Americas Inc.Inventors: Ted Michael Shields, Michael Drummy, David Joyce, Matthew Thomas Susa
-
Publication number: 20170089847Abstract: Disclosed is a portable non-destructive testing (NDT) instrument system that transmits spectrum data measured from a test material sample to a remotely located computer for computation of the sample's atomic element composition. The atomic element composition is subsequently transmitted back to the portable instrument for display to the operator in real time. The precision and accuracy of the compositional computation is improved by the greater processing power of the high performance remote computer. The operator of the NDT instrument may choose to use the remote computer to perform part or all of the compositional computation.Type: ApplicationFiled: September 25, 2015Publication date: March 30, 2017Applicant: OLYMPUS SCIENTIFIC SOLUTIONS AMERICAS INC.Inventors: Michael Drummy, C. Tricia Liu
-
Patent number: 9176080Abstract: An X-ray fluorescence (XRF) instrument comprises a hand-held device housing which holds a radiation emitter configured to emit radiation directed at a test object and a radiation detector housed inside a chamber closed by a sealing window and configured to detect radiation of the test object, caused by the test object being exposed to the emitted radiation. A protective cover mechanism is affixed to the testing device and is configured to have a closed position which covers or blocks access to the sealing window to protect it from being broken or damaged by debris or other obstructions, and an open position which exposes the sealing window to allow the un-obstructed passage of radiation therethrough. The cover mechanism can be implemented variously, including by a pivotally mounted cover plate, an iris mechanism, a fan-like cover and the like. Debris can be detected variously, including by strain sensors, optical detectors and proximity sensors.Type: GrantFiled: July 17, 2012Date of Patent: November 3, 2015Assignee: Olympus NDT, Inc.Inventor: Michael Drummy
-
Publication number: 20150212018Abstract: Disclosed is a test stand that supports and stabilizes a handheld XRF analyzer, and holds a body of sample to be tested. The test stand allows both horizontal and vertical analysis positions of the analyzer. The preferred embodiment of the test stand comprises a shielded X-ray chamber in which samples are tested and which affixes to the XRF analyzer's window via a spring loaded handle, a stabilizing base to which the analyzer's handle is situated, and a stanchion for horizontal mounting of the XRF analyzer. In the horizontal orientation, the chamber contains an adjustable platform and soil sample retainer to facilitate the positioning of the sample to be tested. The stanchion can be stored under the base.Type: ApplicationFiled: December 8, 2014Publication date: July 30, 2015Applicant: Olympus Scientific Solutions Americas Inc.Inventors: Ted Michael Shields, Michael Drummy, David Joyce, Matthew Thomas Susa
-
Patent number: 8904872Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.Type: GrantFiled: December 29, 2010Date of Patent: December 9, 2014Assignee: Olympus NDTInventors: Pierre Langlois, Michael Drummy
-
Patent number: 8798940Abstract: A device is disclosed for performing non-destructive inspection and testing (NDT/NDI) of an elongated test object, wherein the inspection system includes: a test object conveyor for conveying the test object along a longitudinal conveyance path; a probe assembly including phased-array probes, the probe assembly being configured to induce signals in the test object and sense echoes reflected from the test object; a probe assembly conveyor configured to movably support the probe assembly, to move the probe assembly on a circumferential path about the test object; and a control system coupled to the test object conveyor and to the probe assembly conveyor and configured to allow data acquisition by and from the phased-array probes while, simultaneously, the test object moves along the longitudinal path and the phased-array probes move on the circumferential path.Type: GrantFiled: April 11, 2011Date of Patent: August 5, 2014Assignee: Olympus NDT Inc.Inventors: Christophe Imbert, Michael Drummy
-
Patent number: 8670952Abstract: A non-destructive inspection (NDI) instrument includes a sensor connection system configured to receive test signals from at least two different types of NDI sensors which are configured to obtain test signals from an object being tested. The sensor connection system has sensor-specific connection circuits and at least one common sensor connection circuit. A data acquisition circuitry is coupled to the sensor connection and has sensor-specific data acquisition circuits and at least one common data acquisition circuit. It is further coupled to a common digital data processor which executes sensor-specific processing modules and at least one common processing module. A common display screen and user interface is coupled to the data processor and enables programs including sensor-specific user interface modules and at least one common user interface module. The sensor types preferably include all of or any combination of an ultrasound sensor, an eddy current sensor and acoustic sensor.Type: GrantFiled: April 18, 2011Date of Patent: March 11, 2014Assignee: Olympus NDT Inc.Inventor: Michael Drummy
-
Patent number: 8577629Abstract: A method and system related to phased array ultrasonic systems identifies faults in individual element on a regular basis. The method and system are based on a simple approach of calculating energy levels in response signals from each individual element and then identifying any discontinuities or unexpected drops in energy levels sensed during a typical phased array operation, by comparing responses for individual transducer elements to the group response.Type: GrantFiled: March 25, 2009Date of Patent: November 5, 2013Assignee: Olympus NDTInventors: Christian Simard, Michael Drummy
-
Patent number: 8521457Abstract: A user configured measurement display system and method for a non-destructive testing device and instrument (NDT/NDI) with high input data rate is disclosed. The system and the method provide the means for NDT/NDI instruments display measurement values that satisfies user designated measurement criterion occurring during any measurement time intervals (MTIs). The present disclosure overcomes the shortcomings of conventional ways of picking and displaying measurement values at fixed MTIs, by which the values truly satisfying the measurement criterion that occurs at random MTIs (other than scheduled MTIs) are often skipped.Type: GrantFiled: October 20, 2008Date of Patent: August 27, 2013Assignee: Olympus NDTInventors: Jayesh Patel, Michael Drummy
-
Patent number: 8371151Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.Type: GrantFiled: December 29, 2010Date of Patent: February 12, 2013Assignee: Olympus NDTInventors: Pierre Langlois, Michael Drummy
-
Publication number: 20130022166Abstract: An X-ray fluorescence (XRF) instrument comprises a hand-held device housing which holds a radiation emitter configured to emit radiation directed at a test object and a radiation detector housed inside a chamber closed by a sealing window and configured to detect radiation of the test object, caused by the test object being exposed to the emitted radiation. A protective cover mechanism is affixed to the testing device and is configured to have a closed position which covers or blocks access to the sealing window to protect it from being broken or damaged by debris or other obstructions, and an open position which exposes the sealing window to allow the un-obstructed passage of radiation therethrough. The cover mechanism can be implemented variously, including by a pivotally mounted cover plate, an iris mechanism, a fan-like cover and the like. Debris can be detected variously, including by strain sensors, optical detectors and proximity sensors.Type: ApplicationFiled: July 17, 2012Publication date: January 24, 2013Inventor: Michael DRUMMY
-
Publication number: 20120265491Abstract: A non-destructive inspection (NDI) instrument includes a sensor connection system configured to receive test signals from at least two different types of NDI sensors which are configured to obtain test signals from an object being tested. The sensor connection system has sensor-specific connection circuits and at least one common sensor connection circuit. A data acquisition circuitry is coupled to the sensor connection and has sensor-specific data acquisition circuits and at least one common data acquisition circuit. It is further coupled to a common digital data processor which executes sensor-specific processing modules and at least one common processing module. A common display screen and user interface is coupled to the data processor and enables programs including sensor-specific user interface modules and at least one common user interface module. The sensor types preferably include all of or any combination of an ultrasound sensor, an eddy current sensor and acoustic sensor.Type: ApplicationFiled: April 18, 2011Publication date: October 18, 2012Applicant: OLYMPUS NDT INC.Inventor: Michael DRUMMY
-
Patent number: 8174407Abstract: Alerting a user of a material inspection device to a change in thickness of a material being inspected is disclosed. A thickness offset is determined from calibration information. The calibration information identifies a time of flight of a pulse through a reference sample similar in composition to a material to be inspected. The thickness offset indicates when a thickness of a material being inspected differs from a thickness of the reference sample. A calibration thickness alarm is set, the calibration thickness alarm corresponding to the thickness offset. A change in thickness of the material being inspected is detected. The calibration thickness alarm is engaged to alert the user of the inspection device of a detected change in thickness of the material being inspected.Type: GrantFiled: June 3, 2009Date of Patent: May 8, 2012Assignee: Olympus NDT Inc.Inventors: Steven Abe LaBreck, Paul Joseph DeAngelo, Michael Drummy
-
Patent number: 8138755Abstract: An enhanced wireless eddy current probe is disclosed which has means to wirelessly couple to a non-destructive inspection (NDI) system situated some distance away from an inspection point on a material under inspection. The disclosed enhanced wireless eddy current probe provides means for executing advanced functions necessary for a complex eddy current inspection operation. These functions include, but are not limited to, storing, loading, and executing a predetermined firing sequence on an array of coil elements, probe balancing, probe calibration, and providing bibliographic information specific to said probe to a wirelessly coupled NDI system.Type: GrantFiled: July 10, 2009Date of Patent: March 20, 2012Assignee: Olympus NDTInventor: Michael Drummy
-
Publication number: 20110257903Abstract: A device is disclosed for performing non-destructive inspection and testing (NDT/NDI) of an elongated test object, wherein the inspection system includes: a test object conveyor for conveying the test object along a longitudinal conveyance path; a probe assembly including phased-array probes, the probe assembly being configured to induce signals in the test object and sense echoes reflected from the test object; a probe assembly conveyor configured to movably support the probe assembly, to move the probe assembly on a circumferential path about the test object; and a control system coupled to the test object conveyor and to the probe assembly conveyor and configured to allow data acquisition by and from the phased-array probes while, simultaneously, the test object moves along the longitudinal path and the phased-array probes move on the circumferential path.Type: ApplicationFiled: April 11, 2011Publication date: October 20, 2011Applicant: OLYMPUS NDT INC.Inventors: Christophe IMBERT, Michael DRUMMY
-
Patent number: 7958769Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.Type: GrantFiled: February 14, 2006Date of Patent: June 14, 2011Assignee: Olympus NDTInventors: Pierre Langlois, Michael Drummy
-
Publication number: 20110100089Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.Type: ApplicationFiled: December 29, 2010Publication date: May 5, 2011Applicant: OLYMPUS NDTInventors: Pierre Langlois, Michael Drummy
-
Publication number: 20110094304Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.Type: ApplicationFiled: December 29, 2010Publication date: April 28, 2011Applicant: OLYMPUS NDTInventors: Pierre Langlois, Michael Drummy
-
Patent number: 7911368Abstract: A blending circuit is disclosed to be operable to combine plurality of digital outputs received from an analog to digital conversion system to create a composite digital signal. The analog to digital conversion system receives analog signals originated from multiple but substantially the same source signals, wherein the source signals being scaled to different degrees. A blending circuit deploys a blending factor to combine the digital outputs in a manner which blends and/or adjusts portion of each digital output being used to avoid over-flown portion of the digital outputs and to minimize phase and/or amplitude discontinuity of the composite digital signal.Type: GrantFiled: October 26, 2009Date of Patent: March 22, 2011Assignee: Olympus NDTInventors: Andrew Robert Thomas, Michael Drummy