Patents by Inventor Michael Drummy

Michael Drummy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9933375
    Abstract: Disclosed is a portable non-destructive testing (NDT) instrument system that transmits spectrum data measured from a test material sample to a remotely located computer for computation of the sample's atomic element composition. The atomic element composition is subsequently transmitted back to the portable instrument for display to the operator in real time. The precision and accuracy of the compositional computation is improved by the greater processing power of the high performance remote computer. The operator of the NDT instrument may choose to use the remote computer to perform part or all of the compositional computation.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 3, 2018
    Assignee: Olympus Scientific Solutions Americas, Inc.
    Inventors: Michael Drummy, C. Tricia Liu
  • Patent number: 9683952
    Abstract: Disclosed is a test stand that supports and stabilizes a handheld XRF analyzer, and holds a body of sample to be tested. The test stand allows both horizontal and vertical analysis positions of the analyzer. The preferred embodiment of the test stand comprises a shielded X-ray chamber in which samples are tested and which affixes to the XRF analyzer's window via a spring loaded handle, a stabilizing base to which the analyzer's handle is situated, and a stanchion for horizontal mounting of the XRF analyzer. In the horizontal orientation, the chamber contains an adjustable platform and soil sample retainer to facilitate the positioning of the sample to be tested. The stanchion can be stored under the base.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: June 20, 2017
    Assignee: Olympus Scientific Solutions Americas Inc.
    Inventors: Ted Michael Shields, Michael Drummy, David Joyce, Matthew Thomas Susa
  • Publication number: 20170089847
    Abstract: Disclosed is a portable non-destructive testing (NDT) instrument system that transmits spectrum data measured from a test material sample to a remotely located computer for computation of the sample's atomic element composition. The atomic element composition is subsequently transmitted back to the portable instrument for display to the operator in real time. The precision and accuracy of the compositional computation is improved by the greater processing power of the high performance remote computer. The operator of the NDT instrument may choose to use the remote computer to perform part or all of the compositional computation.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Applicant: OLYMPUS SCIENTIFIC SOLUTIONS AMERICAS INC.
    Inventors: Michael Drummy, C. Tricia Liu
  • Patent number: 9176080
    Abstract: An X-ray fluorescence (XRF) instrument comprises a hand-held device housing which holds a radiation emitter configured to emit radiation directed at a test object and a radiation detector housed inside a chamber closed by a sealing window and configured to detect radiation of the test object, caused by the test object being exposed to the emitted radiation. A protective cover mechanism is affixed to the testing device and is configured to have a closed position which covers or blocks access to the sealing window to protect it from being broken or damaged by debris or other obstructions, and an open position which exposes the sealing window to allow the un-obstructed passage of radiation therethrough. The cover mechanism can be implemented variously, including by a pivotally mounted cover plate, an iris mechanism, a fan-like cover and the like. Debris can be detected variously, including by strain sensors, optical detectors and proximity sensors.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: November 3, 2015
    Assignee: Olympus NDT, Inc.
    Inventor: Michael Drummy
  • Publication number: 20150212018
    Abstract: Disclosed is a test stand that supports and stabilizes a handheld XRF analyzer, and holds a body of sample to be tested. The test stand allows both horizontal and vertical analysis positions of the analyzer. The preferred embodiment of the test stand comprises a shielded X-ray chamber in which samples are tested and which affixes to the XRF analyzer's window via a spring loaded handle, a stabilizing base to which the analyzer's handle is situated, and a stanchion for horizontal mounting of the XRF analyzer. In the horizontal orientation, the chamber contains an adjustable platform and soil sample retainer to facilitate the positioning of the sample to be tested. The stanchion can be stored under the base.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 30, 2015
    Applicant: Olympus Scientific Solutions Americas Inc.
    Inventors: Ted Michael Shields, Michael Drummy, David Joyce, Matthew Thomas Susa
  • Patent number: 8904872
    Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: December 9, 2014
    Assignee: Olympus NDT
    Inventors: Pierre Langlois, Michael Drummy
  • Patent number: 8798940
    Abstract: A device is disclosed for performing non-destructive inspection and testing (NDT/NDI) of an elongated test object, wherein the inspection system includes: a test object conveyor for conveying the test object along a longitudinal conveyance path; a probe assembly including phased-array probes, the probe assembly being configured to induce signals in the test object and sense echoes reflected from the test object; a probe assembly conveyor configured to movably support the probe assembly, to move the probe assembly on a circumferential path about the test object; and a control system coupled to the test object conveyor and to the probe assembly conveyor and configured to allow data acquisition by and from the phased-array probes while, simultaneously, the test object moves along the longitudinal path and the phased-array probes move on the circumferential path.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: August 5, 2014
    Assignee: Olympus NDT Inc.
    Inventors: Christophe Imbert, Michael Drummy
  • Patent number: 8670952
    Abstract: A non-destructive inspection (NDI) instrument includes a sensor connection system configured to receive test signals from at least two different types of NDI sensors which are configured to obtain test signals from an object being tested. The sensor connection system has sensor-specific connection circuits and at least one common sensor connection circuit. A data acquisition circuitry is coupled to the sensor connection and has sensor-specific data acquisition circuits and at least one common data acquisition circuit. It is further coupled to a common digital data processor which executes sensor-specific processing modules and at least one common processing module. A common display screen and user interface is coupled to the data processor and enables programs including sensor-specific user interface modules and at least one common user interface module. The sensor types preferably include all of or any combination of an ultrasound sensor, an eddy current sensor and acoustic sensor.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: March 11, 2014
    Assignee: Olympus NDT Inc.
    Inventor: Michael Drummy
  • Patent number: 8577629
    Abstract: A method and system related to phased array ultrasonic systems identifies faults in individual element on a regular basis. The method and system are based on a simple approach of calculating energy levels in response signals from each individual element and then identifying any discontinuities or unexpected drops in energy levels sensed during a typical phased array operation, by comparing responses for individual transducer elements to the group response.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: November 5, 2013
    Assignee: Olympus NDT
    Inventors: Christian Simard, Michael Drummy
  • Patent number: 8521457
    Abstract: A user configured measurement display system and method for a non-destructive testing device and instrument (NDT/NDI) with high input data rate is disclosed. The system and the method provide the means for NDT/NDI instruments display measurement values that satisfies user designated measurement criterion occurring during any measurement time intervals (MTIs). The present disclosure overcomes the shortcomings of conventional ways of picking and displaying measurement values at fixed MTIs, by which the values truly satisfying the measurement criterion that occurs at random MTIs (other than scheduled MTIs) are often skipped.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: August 27, 2013
    Assignee: Olympus NDT
    Inventors: Jayesh Patel, Michael Drummy
  • Patent number: 8371151
    Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: February 12, 2013
    Assignee: Olympus NDT
    Inventors: Pierre Langlois, Michael Drummy
  • Publication number: 20130022166
    Abstract: An X-ray fluorescence (XRF) instrument comprises a hand-held device housing which holds a radiation emitter configured to emit radiation directed at a test object and a radiation detector housed inside a chamber closed by a sealing window and configured to detect radiation of the test object, caused by the test object being exposed to the emitted radiation. A protective cover mechanism is affixed to the testing device and is configured to have a closed position which covers or blocks access to the sealing window to protect it from being broken or damaged by debris or other obstructions, and an open position which exposes the sealing window to allow the un-obstructed passage of radiation therethrough. The cover mechanism can be implemented variously, including by a pivotally mounted cover plate, an iris mechanism, a fan-like cover and the like. Debris can be detected variously, including by strain sensors, optical detectors and proximity sensors.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 24, 2013
    Inventor: Michael DRUMMY
  • Publication number: 20120265491
    Abstract: A non-destructive inspection (NDI) instrument includes a sensor connection system configured to receive test signals from at least two different types of NDI sensors which are configured to obtain test signals from an object being tested. The sensor connection system has sensor-specific connection circuits and at least one common sensor connection circuit. A data acquisition circuitry is coupled to the sensor connection and has sensor-specific data acquisition circuits and at least one common data acquisition circuit. It is further coupled to a common digital data processor which executes sensor-specific processing modules and at least one common processing module. A common display screen and user interface is coupled to the data processor and enables programs including sensor-specific user interface modules and at least one common user interface module. The sensor types preferably include all of or any combination of an ultrasound sensor, an eddy current sensor and acoustic sensor.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 18, 2012
    Applicant: OLYMPUS NDT INC.
    Inventor: Michael DRUMMY
  • Patent number: 8174407
    Abstract: Alerting a user of a material inspection device to a change in thickness of a material being inspected is disclosed. A thickness offset is determined from calibration information. The calibration information identifies a time of flight of a pulse through a reference sample similar in composition to a material to be inspected. The thickness offset indicates when a thickness of a material being inspected differs from a thickness of the reference sample. A calibration thickness alarm is set, the calibration thickness alarm corresponding to the thickness offset. A change in thickness of the material being inspected is detected. The calibration thickness alarm is engaged to alert the user of the inspection device of a detected change in thickness of the material being inspected.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: May 8, 2012
    Assignee: Olympus NDT Inc.
    Inventors: Steven Abe LaBreck, Paul Joseph DeAngelo, Michael Drummy
  • Patent number: 8138755
    Abstract: An enhanced wireless eddy current probe is disclosed which has means to wirelessly couple to a non-destructive inspection (NDI) system situated some distance away from an inspection point on a material under inspection. The disclosed enhanced wireless eddy current probe provides means for executing advanced functions necessary for a complex eddy current inspection operation. These functions include, but are not limited to, storing, loading, and executing a predetermined firing sequence on an array of coil elements, probe balancing, probe calibration, and providing bibliographic information specific to said probe to a wirelessly coupled NDI system.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: March 20, 2012
    Assignee: Olympus NDT
    Inventor: Michael Drummy
  • Publication number: 20110257903
    Abstract: A device is disclosed for performing non-destructive inspection and testing (NDT/NDI) of an elongated test object, wherein the inspection system includes: a test object conveyor for conveying the test object along a longitudinal conveyance path; a probe assembly including phased-array probes, the probe assembly being configured to induce signals in the test object and sense echoes reflected from the test object; a probe assembly conveyor configured to movably support the probe assembly, to move the probe assembly on a circumferential path about the test object; and a control system coupled to the test object conveyor and to the probe assembly conveyor and configured to allow data acquisition by and from the phased-array probes while, simultaneously, the test object moves along the longitudinal path and the phased-array probes move on the circumferential path.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 20, 2011
    Applicant: OLYMPUS NDT INC.
    Inventors: Christophe IMBERT, Michael DRUMMY
  • Patent number: 7958769
    Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: June 14, 2011
    Assignee: Olympus NDT
    Inventors: Pierre Langlois, Michael Drummy
  • Publication number: 20110100089
    Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.
    Type: Application
    Filed: December 29, 2010
    Publication date: May 5, 2011
    Applicant: OLYMPUS NDT
    Inventors: Pierre Langlois, Michael Drummy
  • Publication number: 20110094304
    Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.
    Type: Application
    Filed: December 29, 2010
    Publication date: April 28, 2011
    Applicant: OLYMPUS NDT
    Inventors: Pierre Langlois, Michael Drummy
  • Patent number: 7911368
    Abstract: A blending circuit is disclosed to be operable to combine plurality of digital outputs received from an analog to digital conversion system to create a composite digital signal. The analog to digital conversion system receives analog signals originated from multiple but substantially the same source signals, wherein the source signals being scaled to different degrees. A blending circuit deploys a blending factor to combine the digital outputs in a manner which blends and/or adjusts portion of each digital output being used to avoid over-flown portion of the digital outputs and to minimize phase and/or amplitude discontinuity of the composite digital signal.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: March 22, 2011
    Assignee: Olympus NDT
    Inventors: Andrew Robert Thomas, Michael Drummy