Patents by Inventor Michael Durston

Michael Durston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10775404
    Abstract: A method for closed loop operation of a capacitive accelerometer uses a single current source (62) and a single current sink (64) to apply an in-phase drive signal V1? to a first set of fixed capacitive electrode fingers and a corresponding anti-phase drive signal V2? to a second set of fixed capacitive electrode fingers. This provides a net electrostatic restoring force on the proof mass for balancing the inertial force of the applied acceleration and maintains the proof mass at a null position.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: September 15, 2020
    Assignee: ATLANTIC INERTIAL SYSTEMS, LIMITED
    Inventors: Kevin Townsend, Michael Durston, Douglas Sitch
  • Patent number: 10731986
    Abstract: A digitally controlled voltage controlled oscillator comprising an Nbit digital to analogue convertor arranged to receive a frequency change demand signal as a digital Nbit word, and having an output provided via an integrator to a voltage controlled oscillator configured to provide a frequency output.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: August 4, 2020
    Assignee: ATLANTIC INERTIAL SYSTEMS LIMITED
    Inventors: Kevin Townsend, Michael Durston
  • Patent number: 10571485
    Abstract: In a method for open loop operation of a capacitive accelerometer, a first mode of operation comprises electrically measuring a deflection of a proof mass (204) from the null position under an applied acceleration using a pickoff amplifier (206) set to a reference voltage Vcm. A second mode of operation comprises applying electrostatic forces in order to cause the proof mass (204) to deflect from the null position, and electrically measuring the forced deflection so caused. In the second mode of operation the pickoff amplifier (206) has its input (211) switched from Vcm to Vss, using a reference control circuit (209), so that drive amplifiers (210) can apply different voltages Vdd to the proof mass (204) and associated fixed electrodes (202).
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: February 25, 2020
    Assignee: ATLANTIC INERTIAL SYSTEMS, LIMITED
    Inventors: Michael Durston, Kevin Townsend
  • Publication number: 20200041537
    Abstract: A method for closed loop operation of a capacitive accelerometer uses a single current source and a single current sink to apply an in-phase drive signal V1? to a first set of fixed capacitive electrode fingers and a corresponding anti-phase drive signal V2? to a second set of fixed capacitive electrode fingers. This provides a net electrostatic restoring force on the proof mass for balancing the inertial force of the applied acceleration and maintains the proof mass at a null position.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Inventors: Kevin Townsend, Michael Durston, Douglas Sitch
  • Publication number: 20180111826
    Abstract: An micro electro mechanical sensor comprising: a substrate; and a sensor element movably mounted to a first side of said substrate; wherein a second side of said substrate has a pattern formed in relief thereon. The pattern formed in relief on the second side of the substrate provides a reduced surface area for contact with the die bond layer. The reduced surface area reduces the amount of stress that is transmitted from the die bond layer to the substrate (and hence reduces the amount of transmitted stress reaching the MEMS sensor element). Because the substrate relief pattern provides a certain amount of stress decoupling, the die bond layer does not need to decouple the stress to the same extent as in previous designs. Therefore a thinner die bond layer can be used, which in turn allows the whole package to be slightly thinner.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 26, 2018
    Inventors: Michael DURSTON, Kevin TOWNSEND
  • Publication number: 20170322029
    Abstract: A digitally controlled voltage controlled oscillator comprising an Nbit digital to analogue convertor arranged to receive a frequency change demand signal as a digital Nbit word, and having an output provided via an integrator to a voltage controlled oscillator configured to provide a frequency output.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 9, 2017
    Inventors: Kevin Townsend, Michael Durston
  • Publication number: 20170153267
    Abstract: A method for closed loop operation of a capacitive accelerometer uses a single current source (62) and a single current sink (64) to apply an in-phase drive signal V1? to a first set of fixed capacitive electrode fingers and a corresponding anti-phase drive signal V2? to a second set of fixed capacitive electrode fingers. This provides a net electrostatic restoring force on the proof mass for balancing the inertial force of the applied acceleration and maintains the proof mass at a null position.
    Type: Application
    Filed: June 26, 2015
    Publication date: June 1, 2017
    Applicant: Atlantic Inertial Systems Limited
    Inventors: Kevin Townsend, Michael Durston, Douglas Sitch
  • Publication number: 20170146562
    Abstract: In a method for open loop operation of a capacitive accelerometer, a first mode of operation comprises electrically measuring a deflection of a proof mass (204) from the null position under an applied acceleration using a pickoff amplifier (206) set to a reference voltage Vcm. A second mode of operation comprises applying electrostatic forces in order to cause the proof mass (204) to deflect from the null position, and electrically measuring the forced deflection so caused. In the second mode of operation the pickoff amplifier (206) has its input (211) switched from Vcm to Vss, using a reference control circuit (209), so that drive amplifiers (210) can apply different voltages Vdd to the proof mass (204) and associated fixed electrodes (202).
    Type: Application
    Filed: June 5, 2015
    Publication date: May 25, 2017
    Inventors: Michael Durston, Kevin Townsend
  • Patent number: 9494426
    Abstract: A vibratory gyroscope is provided comprising a plurality of secondary pickoff transducers which are each sensitive to the secondary response mode, wherein: at least two of the secondary pickoff transducers comprise skew transducers designed to be sensitive to the primary mode which produce an induced quadrature signal in response thereto. A method of using the gyroscope is provided comprising the steps of arranging electrical connections between the secondary pickoff transducers and a pickoff amplifier so that in use the induced quadrature signal is substantially rejected by the amplifier in the absence of a fault condition, and the amplifier outputs an induced quadrature signal when a fault condition disconnects one of the skew transducers from the amplifier, and a comparator compares the quadrature output from the pickoff amplifier with a predetermined threshold value and provides a fault indication when the predetermined threshold is exceeded.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 15, 2016
    Assignee: Atlantic Inertial Systems Limited
    Inventors: Michael Durston, Takafumi Moriguchi, Ryuta Araki
  • Patent number: 9383400
    Abstract: An electronic circuit and method for carrying out built in test of a capacitor connected to, and arranged to suppress noise at, an input of an electrical circuit is disclosed. The electronic circuit causes current pulses at the input, and monitors the voltage at the input by comparing the voltage at the input with high and/or low reference voltages, outputting a fault signal if the voltage at the input is greater than a high reference voltage or lower than a low reference voltage.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: July 5, 2016
    Assignee: SILICON SENSING SYSTEMS LIMITED
    Inventors: Michael Durston, Douglas Robert Sitch
  • Patent number: 9341476
    Abstract: An inertial sensor is described that has means for improving quadrature rejection The sensor is of a ring type, driven by a driver circuit, the sensor further comprising primary and secondary portions having corresponding signal pickoffs. The primary pickoff signal amplitude is controlled via an automatic gain control, the primary phase lock loop and VCO locks to the resonant frequency to provide the clocks for the synchronous detectors, the primary pickoff signals via the primary phase shift circuit is provided to the primary driver, the secondary pickoff signal being input into a detector circuit capable of detecting motion in the sensor. The secondary channel comprises a series of circuits that when operable in series significantly improve the quadrature rejection ability of the sensor. The circuits include a synchronous detector, passive and active filters and a decimator.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: May 17, 2016
    Assignee: SILICON SENSING SYSTEMS LIMITED
    Inventors: Kevin Townsend, Michael Durston
  • Patent number: 9234907
    Abstract: An angular velocity sensor is described with improved ageing and hysteresis properties. The sensor may be of a ring type driven by a driver circuit, the sensor further comprising primary and secondary portions having corresponding signal pickoffs. The gain of the primary pickoff signal and the capacitance of the primary portions of the sensor are controlled relative to the gain of the secondary pickoff and the capacitance of the secondary portions of the sensor. Control electronics is provided that enables matching of the relative signals from the respective channels. In this way, temperature hysteresis and ageing effects of materials used in forming the sensor are overcome.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: January 12, 2016
    Assignee: SILICON SENSING SYSTEMS LIMITED
    Inventors: Michael Durston, Kevin Townsend, Christopher Paul Fell
  • Patent number: 9176158
    Abstract: An inertial sensor is described that has a commanded test function. The sensor is of a ring type driven by a driver circuit, the sensor further includes primary and secondary portions having corresponding signal pickoffs. The primary pickoff signal amplitude is controlled via an automatic gain control, the primary phase lock loop and VCO locks to the resonant frequency to provide the clocks for the synchronous detectors, the primary pickoff signals via the primary phase shift circuit is provided to the primary driver, the secondary pickoff signal being input into a detector circuit capable of detecting motion in the sensor. The commanded test function includes a signal derived from the primary portion of the circuit and input into the two inputs of a differential amplifier in the secondary pickoff detector circuit.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 3, 2015
    Assignee: SILICON SENSING SYSTEMS LIMITED
    Inventors: Kevin Townsend, Michael Durston, Douglas Robert Sitch
  • Patent number: 9162875
    Abstract: An inertial sensor is described in which a resonant element is driven by control electronics into resonance. The control electronics includes an oscillator. A circuit is provided for matching the frequency of the oscillator with the frequency of the output of the resonant element such that the time to operation from start up of the sensor is minimized and the requirement of frequency matching a given sensor to the control electronics is removed.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: October 20, 2015
    Assignee: SILICON SENSING SYSTEMS LIMITED
    Inventors: Michael Durston, David Beasley, Kevin Townsend
  • Publication number: 20140338449
    Abstract: A vibratory gyroscope is provided comprising a plurality of secondary pickoff transducers which are each sensitive to the secondary response mode, wherein: at least two of the secondary pickoff transducers comprise skew transducers designed to be sensitive to the primary mode which produce an induced quadrature signal in response thereto. A method of using the gyroscope is provided comprising the steps of arranging electrical connections between the secondary pickoff transducers and a pickoff amplifier so that in use the induced quadrature signal is substantially rejected by the amplifier in the absence of a fault condition, and the amplifier outputs an induced quadrature signal when a fault condition disconnects one of the skew transducers from the amplifier, and a comparator compares the quadrature output from the pickoff amplifier with a predetermined threshold value and provides a fault indication when the predetermined threshold is exceeded.
    Type: Application
    Filed: November 27, 2012
    Publication date: November 20, 2014
    Applicants: SUMITOMO PRECISION PRODUCTS COMPANY LIMITED, ATLANTIC INERTIAL SYSTEMS LIMITED
    Inventors: Michael Durston, Takafumi Moriguchi, Ryuta Araki
  • Publication number: 20140320155
    Abstract: An electronic circuit and method for carrying out built in test of a capacitor connected to, and arranged to suppress noise at, an input of an electrical circuit is disclosed. The electronic circuit causes current pulses at the input, and monitors the voltage at the input by comparing the voltage at the input with high and/or low reference voltages, outputting a fault signal if the voltage at the input is greater than a high reference voltage or lower than a low reference voltage.
    Type: Application
    Filed: December 13, 2012
    Publication date: October 30, 2014
    Applicant: SILICON SENSING SYSTEMS LIMITED
    Inventors: Michael Durston, Douglas Robert Sitch
  • Publication number: 20130233074
    Abstract: An angular velocity sensor is described with improved ageing and hysteresis properties. The sensor may be of a ring type driven by a driver circuit, the sensor further comprising primary and secondary portions having corresponding signal pickoffs. The gain of the primary pickoff signal and the capacitance of the primary portions of the sensor are controlled relative to the gain of the secondary pickoff and the capacitance of the secondary portions of the sensor. Control electronics is provided that enables matching of the relative signals from the respective channels. In this way, temperature hysteresis and ageing effects of materials used in forming the sensor are overcome.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 12, 2013
    Applicant: SILICON SENSING SYSTEMS LIMITED
    Inventors: Michael Durston, Kevin Townsend, Christopher Paul Fell
  • Publication number: 20130199293
    Abstract: An inertial sensor is described in which a resonant element is driven by control electronics into resonance. The control electronics includes an oscillator. A circuit is provided for matching the frequency of the oscillator with the frequency of the output of the resonant element such that the time to operation from start up of the sensor is minimized and the requirement of frequency matching a given sensor to the control electronics is removed.
    Type: Application
    Filed: April 5, 2011
    Publication date: August 8, 2013
    Applicant: SILICON SENSING SYSTEMS LIMITED
    Inventors: Michael Durston, David Beasley, Kevin Townsend
  • Publication number: 20130199294
    Abstract: An inertial sensor is described that has means for improving quadrature rejection The sensor is of a ring type, driven by a driver circuit, the sensor further comprising primary and secondary portions having corresponding signal pickoffs. The primary pickoff signal amplitude is controlled via an automatic gain control, the primary phase lock loop and VCO locks to the resonant frequency to provide the clocks for the synchronous detectors, the primary pickoff signals via the primary phase shift circuit is provided to the primary driver, the secondary pickoff signal being input into a detector circuit capable of detecting motion in the sensor. The secondary channel comprises a series of circuits that when operable in series significantly improve the quadrature rejection ability of the sensor. The circuits include a synchronous detector, passive and active filters and a decimator.
    Type: Application
    Filed: May 13, 2011
    Publication date: August 8, 2013
    Applicant: SILICON SENSING SYSTEMS LIMITED
    Inventors: Kevin Townsend, Michael Durston
  • Publication number: 20130081463
    Abstract: An inertial sensor is described that has a commanded test function. The sensor is of a ring type driven by a driver circuit, the sensor further comprising primary and secondary portions having corresponding signal pickoffs. The primary pickoff signal amplitude is controlled via an automatic gain control, the primary phase lock loop and VCO locks to the resonant frequency to provide the clocks for the synchronous detectors, the primary pickoff signals via the primary phase shift circuit is provided to the primary driver, the secondary pickoff signal being input into a detector circuit capable of detecting motion in the sensor. The commanded test function comprises signal derived from the primary portion of the circuit and input into the two inputs of a differential amplifier in the secondary pickoff detector circuit.
    Type: Application
    Filed: March 3, 2011
    Publication date: April 4, 2013
    Applicant: SILICON SENSING SYSTEMS LIMITED
    Inventors: Kevin Townsend, Michael Durston, Douglas Robert Sitch