Patents by Inventor Michael E. Chalkley

Michael E. Chalkley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5711929
    Abstract: A process for removing mercury from elemental sulphur contaminated therewith by liquid-liquid contact by mixing of the contaminated elemental sulphur in a molten state with an aqueous solution containing sulphide and polysulphide anions for extraction of the mercury contaminant from the elemental sulphur into the aqueous sulphide solution, and separating the aqueous sulphide solution containing mercury contaminant from the molten elemental sulphur to provide an elemental sulphur product substantially free from mercury.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: January 27, 1998
    Assignee: 698638 Alberta Ltd.
    Inventors: Michael E. Chalkley, Michael J. Collins, Manher M. Makwana, Ian M. Masters, John Stiksma
  • Patent number: 5403571
    Abstract: A process for removing mercury or other metal impurities from elemental sulphur contaminated therewith includes mixing such elemental sulphur in a molten state with an aqueous sulphide solution or an aqueous solution of sufficiently high pH which reacts with elemental sulphur and forms a sulphide solution to cause extraction of mercury or other metal contaminants from the elemental sulphur into the aqueous sulphide solutions, and separating the aqueous sulphide solution containing mercury or other metal contaminants from the molten elemental sulphur to provide an elemental sulphur product substantially free from mercury and other metal contaminants.
    Type: Grant
    Filed: April 4, 1991
    Date of Patent: April 4, 1995
    Assignee: Sherritt Gordon Limited
    Inventors: Michael E Chalkley, Michael J. Collins, Manher M. Makwana, Ian M. Masters
  • Patent number: 5380354
    Abstract: A process for recovering zinc and iron from zinc- and iron-containing sulphidic material, which also contains lead and silver, in which the sulphidic material is leached under oxidizing conditions in a two stage countercurrent pressure leach to produce a zinc-containing solution from which zinc can be recovered by conventional means such as electrowinning, followed by a reducing leach to produce a lead- and silver-bearing product containing substantially all of the lead and a substantial portion of the silver present in the zinc-containing sulphidic materials, and a high strength iron bearing solution having the iron in the ferrous state from which substantially pure, saleable or environmentally acceptable iron residue in the form of hematite which contains the majority of the soluble iron present in the zinc-containing sulphidic materials is produced.
    Type: Grant
    Filed: May 4, 1994
    Date of Patent: January 10, 1995
    Assignee: Sherritt Inc.
    Inventors: Michael E. Chalkley, Ian M. Masters, Barry N. Doyle
  • Patent number: 5348713
    Abstract: A process is disclosed for recovering zinc, lead, copper and precious metals from zinc plant residue, said process comprising leaching the residue with return zinc spent electrolyte, neutralizing residual acid and reducing ferric iron in the solution by addition of zinc sulphide concentrate in the presence of a limited quantity of oxygen, flotation of the resulting slurry to separate unreacted zinc sulphide, treatment of flotation tailings with sulphur dioxide and elemental sulphur to further leach iron, zinc and impurity elements and precipitate copper, flotation of the resulting slurry to separate a copper sulphide concentrate, thickening, filtering and washing of the flotation tailings followed by addition of lime and sodium sulphide to activate lead sulphate and flotation of a lead concentrate from the residue.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: September 20, 1994
    Assignee: Sherritt Gordon Limited
    Inventors: Derek E. Kerfoot, Michael J. Collins, Michael E. Chalkley
  • Patent number: 4594102
    Abstract: A process for recovering cobalt and nickel values from cobalt and nickel containing sulphidic material also containing iron includes roasting the sulphidic material to produce a calcine containing water soluble cobalt and nickel sulphate, and leaching the calcine in aqueous sulphate solution under oxidizing conditions at an oxygen overpressure in the range of from about 50 kPa to about 1500 kPa and at a temperature in the range of from about 100.degree. to about 180.degree. C. to produce an iron-containing residue and a cobalt and nickel containing solution. The residue is separated from the solution, and cobalt and nickel values are recovered from the solution.
    Type: Grant
    Filed: September 15, 1983
    Date of Patent: June 10, 1986
    Assignee: Sherritt Gordon Mines Limited
    Inventors: Donald R. Weir, Derek E. Kerfoot, Michael E. Chalkley
  • Patent number: 4545963
    Abstract: A process for separately recovering zinc and lead values from zinc and lead containing sulphidic ore which also contains iron comprises subjecting ground ore to a first flotation step to float an initial lead concentrate containing zinc and produce zinc and iron containing tailings. The zinc and iron containing tailings are subjected to a second flotation step to float an initial zinc concentrate containing iron and also produce tailings. The initial zinc concentrate is subjected to a third flotation step to float a further zinc concentrate containing iron and also produce zinc and iron containing tailings. The zinc and iron containing tailings from the third flotation step and at least a lead and zinc containing portion of the initial lead concentrate are leached in a first leach step under oxidizing conditions at a temperature in the range of from about 130.degree. to about 170.degree. C.
    Type: Grant
    Filed: September 26, 1983
    Date of Patent: October 8, 1985
    Assignee: Sherritt Gordon Mines Limited
    Inventors: Donald R. Weir, Ian M. Masters, Barry N. Doyle, Michael E. Chalkley