Patents by Inventor Michael E. Crawford

Michael E. Crawford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150239043
    Abstract: A method for casting an object (12) having an integrated surface feature (10) for location, inspection, and analysis using a feature-based vision system is provided herein that includes determining a shape geometry for a surface feature (10), wherein the shape geometry is adapted for tracking with a feature-based vision system, determining a proper size, placement, and orientation for the surface feature (10) based on a type of inspection, and casting the surface feature (10) into an object (12) at the determined placement and orientation using an investment casting process to produce an integrated surface feature.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 27, 2015
    Applicant: Siemens Energy, Inc.
    Inventors: Jonathan E. Shipper, JR., Samuel R. Miller, JR., Jae Y. Um, Michael E. Crawford, Gary B. Merrill, Ahmed Kamel
  • Patent number: 9028207
    Abstract: A component wall in a turbine engine includes a substrate, a diffusion section, and at least one cooling passage. The diffusion section is located in a surface of the substrate and is defined by a first sidewall and a second sidewall. The cooling passage(s) include an outlet portion through which cooling air exits in a direction toward the first sidewall. The outlet portion includes a rear section, a front section, and an inner wall having proximal and distal ends. The rear section is located between the first and second sidewalls. The front section extends between the first sidewall and the distal end of the inner wall. The first sidewall extends into the outlet portion of the cooling passage(s) to the inner wall and extends from the first lateral wall to the second lateral wall so as to block the front section of the outlet portion.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: May 12, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Humberto A. Zuniga, Ching-Pang Lee, Michael E. Crawford
  • Patent number: 9010125
    Abstract: A cooling arrangement (56) having: a duct (30) configured to receive hot gases (16) from a combustor; and a flow sleeve (50) surrounding the duct and defining a cooling plenum (52) there between, wherein the flow sleeve is configured to form impingement cooling jets (70) emanating from dimples (82) in the flow sleeve effective to predominately cool the duct in an impingement cooling zone (60), and wherein the flow sleeve defines a convection cooling zone (64) effective to cool the duct solely via a cross-flow (76), the cross-flow comprising cooling fluid (72) exhausting from the impingement cooling zone. In the impingement cooling zone an undimpled portion (84) of the flow sleeve tapers away from the duct as the undimpled portion nears the convection cooling zone. The flow sleeve is configured to effect a greater velocity of the cross-flow in the convection cooling zone than in the impingement cooling zone.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 21, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Jay A. Morrison, Ching-Pang Lee, Michael E. Crawford
  • Publication number: 20150033697
    Abstract: A cooling arrangement (56) having: a duct (30) configured to receive hot gases (16) from a combustor; and a flow sleeve (50) surrounding the duct and defining a cooling plenum (52) there between, wherein the flow sleeve is configured to form impingement cooling jets (70) emanating from dimples (82) in the flow sleeve effective to predominately cool the duct in an impingement cooling zone (60), and wherein the flow sleeve defines a convection cooling zone (64) effective to cool the duct solely via a cross-flow (76), the cross-flow comprising cooling fluid (72) exhausting from the impingement cooling zone. In the impingement cooling zone an undimpled portion (84) of the flow sleeve tapers away from the duct as the undimpled portion nears the convection cooling zone. The flow sleeve is configured to effect a greater velocity of the cross-flow in the convection cooling zone than in the impingement cooling zone.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 5, 2015
    Inventors: Jay A. Morrison, Ching-Pang Lee, Michael E. Crawford
  • Publication number: 20120076644
    Abstract: A component wall in a turbine engine includes a substrate, a diffusion section, and at least one cooling passage. The diffusion section is located in a surface of the substrate and is defined by a first sidewall and a second sidewall. The cooling passage(s) include an outlet portion through which cooling air exits in a direction toward the first sidewall. The outlet portion includes a rear section, a front section, and an inner wall having proximal and distal ends. The rear section is located between the first and second sidewalls. The front section extends between the first sidewall and the distal end of the inner wall. The first sidewall extends into the outlet portion of the cooling passage(s) to the inner wall and extends from the first lateral wall to the second lateral wall so as to block the front section of the outlet portion.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 29, 2012
    Inventors: Humberto A. Zuniga, Ching-Pang Lee, Michael E. Crawford
  • Patent number: 4946554
    Abstract: A method and apparatus for retreading a tire includes a mold segment (14) having open ends (16) and (18). A tire carcass (10) has a layer of uncured rubber (12) built up on the surface thereof. The mold (14) is disposed therearound with ribs (20) resting on the surface thereof. A semi-flexible cap (24) is disposed over the ends (16) and (18) which are separated by a gap (20). An elastic strap (26) is then wrapped about the assembly to secure the mold (14) to the built up tire carcass (10). An envelope (28) is then wrapped about the assembled tire carcass (10) to provide a radially inward force thereto. The whole assembly is then cured in a curing oven.
    Type: Grant
    Filed: January 31, 1986
    Date of Patent: August 7, 1990
    Assignee: Long Mile Rubber Company, Inc.
    Inventors: Arthur W. Magee, Richard D. Shockley, Michael E. Crawford
  • Patent number: 4792379
    Abstract: A method and apparatus for retreading a tire includes a mold segment (14) having open ends (16) and (18). A tire carcass (10) has a layer of uncured rubber (12) built up on the surface thereof. The mold (14) is disposed therearound with ribs (20) resting on the surface thereof. A semi-flexible cap (24) is disposed over the ends (16) and (18) which are separated by a gap (20). An elastic strap (26) is then wrapped about the assembly to secure the mold (14) to the built up tire carcass (10). An envelope (28) is then wrapped about the assembled tire carcass (10) to provide a radially inward force thereto. The whole assembly is then cured in a curing oven.
    Type: Grant
    Filed: January 31, 1986
    Date of Patent: December 20, 1988
    Assignee: Long Mile Rubber Company
    Inventors: Arthur W. Magee, Richard D. Shockley, Michael E. Crawford
  • Patent number: 4588460
    Abstract: A method and apparatus for retreading a tire includes a mold segment (14) having open ends (16) and (18). A tire carcass (10) has a layer of uncured rubber (12) built up on the surface thereof. The mold (14) is disposed therearound with ribs (20) resting on the surface thereof. A semi-flexible cap (24) is disposed over the ends (16) and (18) which are separated by a gap (20). An elastic strap (26) is then wrapped about the assembly to secure the mold (14) to the built up tire carcass (10). An envelope (28) is then wrapped about the assembled tire carcass (10) to provide a radially inward force thereto. The whole assembly is then cured in a curing oven.
    Type: Grant
    Filed: April 18, 1984
    Date of Patent: May 13, 1986
    Assignee: Long Mile Rubber Co., Inc.
    Inventors: Arthur W. Magee, Richard D. Shockley, Michael E. Crawford