Patents by Inventor Michael E. Givens

Michael E. Givens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10854444
    Abstract: In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: December 1, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Suvi P. Haukka, Fu Tang, Michael E. Givens, Jan Willem Maes, Qi Xie
  • Publication number: 20200266054
    Abstract: In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
    Type: Application
    Filed: January 27, 2020
    Publication date: August 20, 2020
    Inventors: Suvi P. Haukka, Fu Tang, Michael E. Givens, Jan Willem Maes, Qi Xie
  • Patent number: 10566223
    Abstract: Embodiments of the present disclosure can help increase throughput and reduce resource conflicts and delays in semiconductor processing tools. An exemplary method according to various aspects of the present disclosure includes analyzing, by a computer program operating on a computer system, a plurality of expected times to complete each of a respective plurality of actions to be performed by a semiconductor processing tool, the semiconductor processing too including a first process module and a second process module.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: February 18, 2020
    Assignee: ASM IP Holdings B.V.
    Inventors: Keith R. Lawson, Michael E. Givens
  • Patent number: 10553424
    Abstract: In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: February 4, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Suvi P. Haukka, Fu Tang, Michael E. Givens, Jan Willem Maes, Qi Xie
  • Publication number: 20190259605
    Abstract: In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
    Type: Application
    Filed: January 22, 2019
    Publication date: August 22, 2019
    Inventors: Suvi P. Haukka, Fu Tang, Michael E. Givens, Jan Willem Maes, Qi Xie
  • Patent number: 10199213
    Abstract: In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: February 5, 2019
    Assignee: ASM IP HOLDING B.V.
    Inventors: Suvi P. Haukka, Fu Tang, Michael E. Givens, Jan Willem Maes, Qi Xie
  • Publication number: 20180068846
    Abstract: In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
    Type: Application
    Filed: July 17, 2017
    Publication date: March 8, 2018
    Inventors: Suvi P. Haukka, Fu Tang, Michael E. Givens, Jan Willem Maes, Qi Xie
  • Patent number: 9911676
    Abstract: Improved methods and systems for passivating a surface of a high-mobility semiconductor and structures and devices formed using the methods are disclosed. The method includes providing a high-mobility semiconductor surface to a chamber of a reactor and exposing the high-mobility semiconductor surface to a gas-phase chalcogen precursor to passivate the high-mobility semiconductor surface.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: March 6, 2018
    Assignee: ASM IP Holding B.V.
    Inventors: Fu Tang, Michael E. Givens, Qi Xie, Xiaoqiang Jiang, Petri Raisanen, Pauline Calka
  • Patent number: 9905492
    Abstract: Improved methods and systems for passivating a surface of a high-mobility semiconductor and structures and devices formed using the methods are disclosed. The method includes providing a high-mobility semiconductor surface to a chamber of a reactor and exposing the high-mobility semiconductor surface to a gas-phase sulfur precursor to passivate the high-mobility semiconductor surface.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: February 27, 2018
    Assignee: ASM IP Holding B.V.
    Inventors: Fu Tang, Michael E. Givens, Qi Xie, Petri Raisanen
  • Publication number: 20170256429
    Abstract: Embodiments of the present disclosure can help increase throughput and reduce resource conflicts and delays in semiconductor processing tools. An exemplary method according to various aspects of the present disclosure includes analyzing, by a computer program operating on a computer system, a plurality of expected times to complete each of a respective plurality of actions to be performed by a semiconductor processing tool, the semiconductor processing tool including a first process module and a second process module.
    Type: Application
    Filed: May 17, 2017
    Publication date: September 7, 2017
    Inventors: Keith R. Lawson, Michael E. Givens
  • Patent number: 9721786
    Abstract: In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: August 1, 2017
    Assignee: ASM IP Holding B.V.
    Inventors: Suvi P. Haukka, Fu Tang, Michael E. Givens, Jan Willem Maes, Qi Xie
  • Patent number: 9659799
    Abstract: Embodiments of the present disclosure can help increase throughput and reduce resource conflicts and delays in semiconductor processing tools. An exemplary method according to various aspects of the present disclosure includes analyzing, by a computer program operating on a computer system, a plurality of expected times to complete each of a respective plurality of actions to be performed by a semiconductor processing tool, the semiconductor processing tool including a first process module and a second process module.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: May 23, 2017
    Assignee: ASM IP Holding B.V.
    Inventors: Keith R. Lawson, Michael E. Givens
  • Publication number: 20170117203
    Abstract: Improved methods and systems for passivating a surface of a high-mobility semiconductor and structures and devices formed using the methods are disclosed. The method includes providing a high-mobility semiconductor surface to a chamber of a reactor and exposing the high-mobility semiconductor surface to a gas-phase sulfur precursor to passivate the high-mobility semiconductor surface.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 27, 2017
    Inventors: Fu Tang, Michael E. Givens, Qi Xie, Petri Raisanen
  • Publication number: 20170117202
    Abstract: Improved methods and systems for passivating a surface of a high-mobility semiconductor and structures and devices formed using the methods are disclosed. The method includes providing a high-mobility semiconductor surface to a chamber of a reactor and exposing the high-mobility semiconductor surface to a gas-phase chalcogen precursor to passivate the high-mobility semiconductor surface.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 27, 2017
    Inventors: Fu Tang, Michael E. Givens, Qi Xie, Xiaoqiang Jiang, Petri Raisanen, Pauline Calka
  • Publication number: 20160203974
    Abstract: In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
    Type: Application
    Filed: January 11, 2016
    Publication date: July 14, 2016
    Inventors: Suvi P. Haukka, Fu Tang, Michael E. Givens, Jan Willem Maes, Qi Xie
  • Publication number: 20140067110
    Abstract: Embodiments of the present disclosure can help increase throughput and reduce resource conflicts and delays in semiconductor processing tools. An exemplary method according to various aspects of the present disclosure includes analyzing, by a computer program operating on a computer system, a plurality of expected times to complete each of a respective plurality of actions to be performed by a semiconductor processing tool, the semiconductor processing tool including a first process module and a second process module.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: ASM IP Holding B.V.
    Inventors: Keith R. Lawson, Michael E. Givens
  • Patent number: 7790556
    Abstract: Methods are provided herein for forming electrode layers over high dielectric constant (“high k”) materials. In the illustrated embodiments, a high k gate dielectric, such as zirconium oxide, is protected from reduction during a subsequent deposition of silicon-containing gate electrode. In particular, a seed deposition phase includes conditions designed for minimizing hydrogen reduction of the gate dielectric, including low hydrogen content, low temperatures and/or low partial pressures of the silicon source gas. Conditions are preferably changed for higher deposition rates and deposition continues in a bulk phase. Desirably, though, hydrogen diffusion is still minimized by controlling the above-noted parameters. In one embodiment, high k dielectric reduction is minimized through omission of a hydrogen carrier gas. In another embodiment, higher order silanes, aid in reducing hydrogen content for a given deposition rate.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: September 7, 2010
    Assignee: ASM America, Inc.
    Inventors: Christophe F. Pomarede, Michael E. Givens, Eric J. Shero, Michael A. Todd
  • Patent number: 7122085
    Abstract: Preferred embodiments of the present invention provides a sublimation system employing guidance structures including certain preferred embodiments having a high surface area support medium onto which a solid source material for vapor reactant is coated. Preferably, a guidance structure is configured to facilitate the repeated saturation of the carrier gas with the solid source for a vapor reactant. Methods of saturating a carrier gas using guidance structures are also provided.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: October 17, 2006
    Assignee: ASM America, Inc.
    Inventors: Eric J. Shero, Michael E. Givens, Ryan Schmidt
  • Patent number: 7026219
    Abstract: Methods are provided herein for forming electrode layers over high dielectric constant (“high k”) materials. In the illustrated embodiments, a high k gate dielectric, such as zirconium oxide, is protected from reduction during a subsequent deposition of silicon-containing gate electrode. In particular, a seed deposition phase includes conditions designed for minimizing hydrogen reduction of the gate dielectric, including low hydrogen content, low temperatures and/or low partial pressures of the silicon source gas. Conditions are preferably changed for higher deposition rates and deposition continues in a bulk phase. Desirably, though, hydrogen diffusion is still minimized by controlling the above-noted parameters. In one embodiment, high k dielectric reduction is minimized through omission of a hydrogen carrier gas. In another embodiment, higher order silanes aid in reducing hydrogen content for a given deposition rate.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: April 11, 2006
    Assignee: ASM America, Inc.
    Inventors: Christophe F. Pomarede, Michael E. Givens, Eric J. Shero, Michael A. Todd
  • Publication number: 20020173130
    Abstract: Methods are provided herein for forming electrode layers over high dielectric constant (high k) materials. In the illustrated embodiments, a high k gate dielectric, such as zirconium oxide, is protected from reduction during a subsequent deposition of silicon-containing gate electrode. In particular, a seed deposition phase includes conditions designed for minimizing hydrogen reduction of the gate dielectric, including low hydrogen content, low temperatures and/or low partial pressures of the silicon source gas. Conditions are preferably changed for higher deposition rates and deposition continues in a bulk phase. Desirably, though, hydrogen diffusion is still minimized by controlling the above-noted parameters. In one embodiment, high k dielectric reduction is minimized through omission of a hydrogen carrier gas. In another embodiment, higher order silanes aid in reducing hydrogen content for a given deposition rate.
    Type: Application
    Filed: February 11, 2002
    Publication date: November 21, 2002
    Inventors: Christophe F. Pomerede , Michael E. Givens , Eric J. Shero , Michael A. Todd