Patents by Inventor Michael E. Gorman

Michael E. Gorman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240006632
    Abstract: A four-fluid bipolar plate for a fuel cell includes a nonporous sub-plate and a porous sub-plate. The nonporous sub-plate includes a water management side, an opposing reactant side, and an internal coolant passage therebetween. The water management side includes a recessed region over an area approximately equal to the active area, and the porous sub-plate is nested and sealed in the recessed region. The porous sub-plate includes a reactant side and an opposing water management side. The water management side is in fluid communication with the water management side of the nonporous sub-plate.
    Type: Application
    Filed: July 7, 2023
    Publication date: January 4, 2024
    Inventors: Matthew P. Wilson, Michael E. Gorman, Samuel J. Angles
  • Patent number: 11855322
    Abstract: A fuel cell power plant includes an energy storage system connected in parallel with a fuel cell system. The fuel cell system includes a controller, a fuel flow system, an air flow system, and an internal water management system. The controller is operable to receive, as inputs, the energy storage system state of charge and the power demand from an electric load. The controller is further operable to determine a power split set point and execute commands, as output, to control operation of the air flow system, wherein the air flow system actively regulates the proportion of current flow between the fuel cell system and the energy storage system to meet the power demand of the electric load.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: December 26, 2023
    Assignee: NIMBUS POWER SYSTEMS, INC.
    Inventors: Matthew P. Wilson, Michael E. Gorman, Samuel J. Angles
  • Patent number: 11757111
    Abstract: A bipolar plate for a four-fluid fuel cell includes a nonporous sub-plate and a porous sub-plate. The nonporous sub-plate includes a water management side, an opposing reactant side, and an internal coolant passage therebetween. The porous sub-plate includes a reactant side and an opposing water management side. The reactant side includes a first reactant flow field, and the water management side is fluidly connected to the water management side of the nonporous sub-plate. Embodiments of the invention include a method to operate the four-fluid fuel cell in thermal boost mode, and a method to accumulate and retain product water.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: September 12, 2023
    Assignee: NIMBUS POWER SYSTEMS, INC.
    Inventors: Matthew P. Wilson, Michael E. Gorman, Samuel J. Angles
  • Publication number: 20230040108
    Abstract: A four-fluid bipolar plate for a fuel cell includes a nonporous sub-plate comprising a first reactant half-plate joined to a second reactant half-plate. The nonporous sub-plate includes an internal coolant passage network having coolant flow field passages extending across an active area of the fuel cell. The nonporous sub-plate defines fuel supply and fuel return internal manifolds, oxidant supply and oxidant return internal manifolds, water management supply and water management return internal manifolds, and coolant supply and coolant return internal manifolds. The internal coolant passage network may have secondary cooling functions, such as a reactant coolant loop surrounding an internal reactant internal manifold, providing a heat exchange area to cool incoming reactant gas, and cooling the interfacial and porous sub-plate seals.
    Type: Application
    Filed: October 16, 2022
    Publication date: February 9, 2023
    Inventors: Matthew P. WILSON, Michael E. Gorman, Samuel J. Angles
  • Publication number: 20220399553
    Abstract: A bipolar plate for a four-fluid fuel cell includes a nonporous sub-plate and a porous sub-plate. The nonporous sub-plate includes a water management side, an opposing reactant side, and an internal coolant passage therebetween. The porous sub-plate includes a reactant side and an opposing water management side. The reactant side includes a first reactant flow field, and the water management side is fluidly connected to the water management side of the nonporous sub-plate. Embodiments of the invention include a method to operate the four-fluid fuel cell in thermal boost mode, and a method to accumulate and retain product water.
    Type: Application
    Filed: July 12, 2022
    Publication date: December 15, 2022
    Inventors: Matthew P. Wilson, Michael E. Gorman, Samuel J. Angles
  • Patent number: 11424460
    Abstract: A four-fluid bipolar plate for a fuel cell includes an oxidant flow field, a fuel reactant flow field, a dedicated coolant passage, and a water management flow field. The bipolar plate includes at least one porous layer. A first side of the porous layer is fluidly connected to the water management flow field via a plurality of pores that act as a bubble barrier. An opposing second side of the porous layer includes either the fuel reactant flow field or the oxidant flow field. In one example, the dedicated coolant passage is internal to the bipolar plate, and may be configured to flow an antifreeze-type coolant.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: August 23, 2022
    Assignee: NIMBUS POWER SYSTEMS INC.
    Inventors: Matthew P. Wilson, Michael E. Gorman, Samuel J. Angles
  • Patent number: 9748592
    Abstract: An exemplary method of providing an electrolyte for a fuel cell comprises including a electrolyte precursor within a fuel cell. An electrolyte is generated within the fuel cell from the precursor. An exemplary fuel cell system includes a cell stack assembly. A manifold is associated with the cell stack assembly. An electrolyte precursor is within at least one of the cell stack assembly or manifold for generating an electrolyte within a fuel cell.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: August 29, 2017
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Sitaram Ramaswamy, Michael E. Gorman
  • Publication number: 20140370402
    Abstract: An exemplary method of providing an electrolyte for a fuel cell comprises including a electrolyte precursor within a fuel cell. An electrolyte is generated within the fuel cell from the precursor. An exemplary fuel cell system includes a cell stack assembly. A manifold is associated with the cell stack assembly. An electrolyte precursor is within at least one of the cell stack assembly or manifold for generating an electrolyte within a fuel cell.
    Type: Application
    Filed: January 26, 2012
    Publication date: December 18, 2014
    Applicant: CLEAREDGE POWER, LLC
    Inventors: Sitaram Ramaswamy, Michael E. Gorman
  • Patent number: 8741494
    Abstract: A method for operating a fuel cell power plant to provide end-use electricity, end-use heat and end-use reformate includes the steps of providing a fuel cell power plant that consumes reformate to provide electricity and heat, said fuel cell power plant having a nominal reformate flow rate and including a fuel processor system for generating reformate from a hydrocarbon fuel; operating the fuel processor system so as to provide a reformate flow at a rate greater than the nominal reformate flow rate; operating the fuel cell power plant using a first portion of the reformate flow to generate the electricity and the heat, the first portion being less than or equal to the nominal reformate flow rate; and providing a second portion of the reformate flow as the end-use reformate.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: June 3, 2014
    Assignee: UTC Fuel Cells, LLC
    Inventors: Paul R. Margiott, Carl Rohrbach, Jr., Michael E. Gorman
  • Publication number: 20090098422
    Abstract: A method for operating a fuel cell power plant to provide end-use electricity, end-use heat and end-use reformate includes the steps of providing a fuel cell power plant that consumes reformate to provide electricity and heat, said fuel cell power plant having a nominal reformate flow rate and including a fuel processor system for generating reformate from a hydrocarbon fuel; operating the fuel processor system so as to provide a reformate flow at a rate greater than the nominal reformate flow rate; operating the fuel cell power plant using a first portion of the reformate flow to generate the electricity and the heat, the first portion being less than or equal to the nominal reformate flow rate; and providing a second portion of the reformate flow as the end-use reformate.
    Type: Application
    Filed: December 22, 2008
    Publication date: April 16, 2009
    Applicant: UTC POWER CORPORATION
    Inventors: Paul R. Margiott, Carl Rohrbach, JR., Michael E. Gorman
  • Patent number: 7485380
    Abstract: A method for operating a fuel cell power plant to provide end-use electricity, end-use heat and end-use reformate includes the steps of providing a fuel cell power plant that consumes reformate to provide electricity and heat, said fuel cell power plant having a nominal reformate flow rate and including a fuel processor system for generating reformate from a hydrocarbon fuel; operating the fuel processor system so as to provide a reformate flow at a rate greater than the nominal reformate flow rate; operating the fuel cell power plant using a first portion of the reformate flow to generate the electricity and the heat, the first portion being less than or equal to the nominal reformate flow rate; and providing a second portion of the reformate flow as the end-use reformate.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: February 3, 2009
    Assignee: UTC Power Corporation
    Inventors: Paul R. Margiott, Carl Rohrbach, Michael E. Gorman
  • Patent number: 6989208
    Abstract: A method for operating a fuel cell power plant to provide end-use electricity, end-use heat and end-use reformate includes the steps of providing a fuel cell power plant that consumes reformate to provide electricity and heat, said fuel cell power plant having a nominal reformate flow rate and including a fuel processor system for generating reformate from a hydrocarbon fuel; operating the fuel processor system so as to provide a reformate flow at a rate greater than the nominal reformate flow rate; operating the fuel cell power plant using a first portion of the reformate flow to generate the electricity and the heat, the first portion being less than or equal to the nominal reformate flow rate; and providing a second portion of the reformate flow as the end-use reformate.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: January 24, 2006
    Assignee: UTC Fuel Cells, LLC
    Inventors: Paul R. Margiott, Carl Rohrbach, Michael E. Gorman
  • Patent number: 6794073
    Abstract: A direct antifreeze cooled fuel cell is disclosed for producing electrical energy from reducing and process oxidant fluid streams that includes an electrolyte secured between an anode catalyst and a cathode catalyst; a porous anode substrate secured in direct fluid communication with and supporting the anode catalyst; a porous wetproofed cathode substrate secured in direct fluid communication with and supporting the cathode catalyst; a porous water transport or cooler plate secured in direct fluid communication with the porous cathode substrate; and, a direct antifreeze solution passing through the porous water transport plate. A preferred direct antifreeze solution passing through the porous water transport plate remains essentially within the water transport plate and does not poison the catalysts.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: September 21, 2004
    Assignee: International Fuel Cells, LLC
    Inventors: Richard D. Breault, David A. Condit, Albert P. Grasso, Michael E. Gorman
  • Patent number: 6723461
    Abstract: An improved water management system for PEM fuel cells is provided. Catalyst layers are disposed on both sides of a proton exchange membrane. Porous plates are positioned adjacent the catalyst layers. Water transport plates are positioned adjacent the porous plates and the reactant gas are humidified at their inlets, in one embodiment by fins, while moisture is removed in the fuel flow path and at the oxidant outlet, in one embodiment by other fins.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: April 20, 2004
    Assignee: UTC Fuel Cells, LLC
    Inventors: Michael E. Gorman, Donald L. Maricle, Carl A. Reiser, John C. Trocciola, Leslie L. Van Dine
  • Publication number: 20030143441
    Abstract: A method for operating a fuel cell power plant to provide end-use electricity, end-use heat and end-use reformate includes the steps of providing a fuel cell power plant that consumes reformate to provide electricity and heat, said fuel cell power plant having a nominal reformate flow rate and including a fuel processor system for generating reformate from a hydrocarbon fuel; operating the fuel processor system so as to provide a reformate flow at a rate greater than the nominal reformate flow rate; operating the fuel cell power plant using a first portion of the reformate flow to generate the electricity and the heat, the first portion being less than or equal to the nominal reformate flow rate; and providing a second portion of the reformate flow as the end-use reformate.
    Type: Application
    Filed: January 28, 2002
    Publication date: July 31, 2003
    Inventors: Paul R. Margiott, Carl Rohrbach, Michael E. Gorman
  • Publication number: 20020102448
    Abstract: A direct antifreeze cooled fuel cell is disclosed for producing electrical energy from reducing and process oxidant fluid streams that includes an electrolyte secured between an anode catalyst and a cathode catalyst; a porous anode substrate secured in direct fluid communication with and supporting the anode catalyst; a porous wetproofed cathode substrate secured in direct fluid communication with and supporting the cathode catalyst; a porous water transport plate secured in direct fluid communication with the porous cathode substrate; and, a direct antifreeze solution passing through the porous water transport plate.
    Type: Application
    Filed: November 9, 2001
    Publication date: August 1, 2002
    Inventors: Richard D. Breault, David A. Condit, Albert P. Grasso, Michael E. Gorman
  • Publication number: 20020086195
    Abstract: An improved water management system for PEM fuel cells is provided. Catalyst layers are disposed on both sides of a proton exchange membrane. Porous plates are positioned adjacent the catalyst layers. Water transport plates are positioned adjacent the porous plates and the reactant gas are humidified at their inlets, in one embodiment by fins, while moisture is removed in the fuel flow path and at the oxidant outlet, in one embodiment by other fins.
    Type: Application
    Filed: February 8, 2002
    Publication date: July 4, 2002
    Inventors: Michael E. Gorman, Donald L. Maricle, Carl A. Reiser, John C. Trocciola, Leslie L. Van Dine
  • Patent number: 6316135
    Abstract: A direct antifreeze cooled fuel cell is disclosed for producing electrical energy from reducing and process oxidant fluid streams that includes an electrolyte secured between an anode catalyst and a cathode catalyst; a porous anode substrate secured in direct fluid communication with and supporting the anode catalyst; a porous wet proofed cathode substrate secured in direct fluid communication with and supporting the cathode catalyst; a porous water transport plate secured in direct fluid communication with the porous cathode substrate; and, a direct antifreeze solution passing through the porous water transport plate. In operation of the fuel cell, because product water generated electrochemically at the cathode catalyst flows away from the cathode catalyst into the cathode substrate and into the water transport plate and because the cathode substrate is wetproofed, the antifreeze solution passing through the water transport plate remains essentially within this plate.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: November 13, 2001
    Assignee: International Fuel Cells LLC
    Inventors: Richard D. Breault, David A. Condit, Albert P. Grasso, Michael E. Gorman
  • Patent number: 6127057
    Abstract: A self-inerting fuel cell system has a membrane/electrode assembly (MEA). A first fine pore plate is positioned at an anode side of the MEA and defines a fuel reactant flow field and a coolant flow field. A second fine pore plate is positioned at a cathode side of the MEA and defines an oxidant reactant flow field and a coolant flow field. A first means drives the fuel reactant flow field; a second means drives the oxidant flow field, and a third means drives the coolant flow field at a pressure less than that of the pressures of the reactant flow fields during on load operation of the fuel cell system. An air valve is coupled to an inlet or exit port of the oxidant flow field. A controller opens the air valve and activates the reactant and coolant flow fields during fuel cell operation, and closes the air valve and de-activates the reactant and coolant flow fields during fuel cell shut down which results in coolant flooding into the reactant flow fields to thereby inert the fuel cell system during shut down.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: October 3, 2000
    Assignee: International Fuel Cells, LLC
    Inventor: Michael E. Gorman
  • Patent number: RE39348
    Abstract: A water transport plate is provided with optimized physical characteristics to greatly improve fuel cell operation. In a preferred method of manufacturing, graphite powder, reinforcing fibers, cellulosic fibers, and a thermosetting resin are mixed with a liquid to form a slurry and showered onto a screen to form a planar sheet which is dried to form paper. The paper is cut into the desired size and is laid-up. The lay-up is laminated with pressure and heat, carbonized, and graphitized to form a water transport plate for later machining as desired. The finished water transport plate exhibits optimal physical characteristics for bubble pressure, water permeability, median pore size, porosity, thru-plane resistivity and compressive yield strength.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: October 17, 2006
    Assignee: UTC Fuel Cells, LLC
    Inventor: Michael E. Gorman