Patents by Inventor Michael E. Gruchalla

Michael E. Gruchalla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090045886
    Abstract: The present invention comprises novel means and apparatus which provide both impedance matching of arbitrary impedances and transformation between single-ended, floating, and balanced circuits over very wide operating bandwidths with very low excess loss and very low phase and magnitude ripple in the pass band. The present invention can provide high-performance matching, for example from a 50-ohm single-ended system to a 100-ohm balanced system over a bandwidth of 10 kHz to 10 GHz with an excess loss of less than nominally 1 dB and a bandpass magnitude ripple of less than ±0.5 dB. The present invention also provides precision low-loss power division over very wide-bandwidth. The novel means, according to the present invention, can utilize commonly available materials and can be optimized for specific applications to tailor performance to specific needs and to simplify assembly and reduce cost.
    Type: Application
    Filed: June 6, 2008
    Publication date: February 19, 2009
    Inventor: Michael E. Gruchalla
  • Patent number: 7443263
    Abstract: The present invention comprises novel means and apparatus which provide both impedance matching of arbitrary impedances and transformation between single-ended, floating, and balanced circuits over very wide operating bandwidths with very low excess loss and very low phase and magnitude ripple in the pass band. The present invention can provide high-performance matching, for example from a 50-ohm single-ended system to a 100-ohm balanced system over a bandwidth of 10 kHz to 10 GHz with an excess loss of less than nominally 1 dB and a bandpass magnitude ripple of less than ±0.5 dB. The present invention also provides precision low-loss power division over very wide-bandwidth. The novel means, according to the present invention, can utilize commonly available materials and can be optimized for specific applications to tailor performance to specific needs and to simplify assembly and reduce cost.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: October 28, 2008
    Inventor: Michael E. Gruchalla
  • Patent number: 5347247
    Abstract: A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54).
    Type: Grant
    Filed: June 2, 1993
    Date of Patent: September 13, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Michael E. Gruchalla
  • Patent number: 5157361
    Abstract: The present invention comprises a novel semiconductor device which further comprises a nonlinear transmission-line structure. The semiconductor device is that of a very long narrow voltage-dependent capacitor, such as a semiconductor diode or MOS capacitor, where the anode and cathode electrodes comprise the conductors of a transmission line and the depletion region comprises the dielectric of the transmission line. An input signal is applied at one end of the long, narrow structure. Such signal application results in the launch of a traveling wave traveling along the transmission-line structure. At the far end of the transmission-line structure, the signal is coupled out and applied to a load. The temporal and spatial modulation of the depletion capacitance of the semiconductor device as the traveling wave travels along the transmission-line structure results in temporal compression of the input signal.
    Type: Grant
    Filed: May 10, 1991
    Date of Patent: October 20, 1992
    Inventors: Michael E. Gruchalla, David C. Koller
  • Patent number: 4797628
    Abstract: The present invention provides a modified distributed amplifier which is capable of providing push-pull operation without the loading losses of conventional push-pull combining. The modified distributed amplifier comprises a distributed amplifier configuration and with signal inverting means, such as a wide bandwidth transmission line transformer, interconnected into both the input and output lines. The signal inverting means are most effectively placed at the electrical centers of the lines, but may be placed at any positions in the individual lines to produce optimum performance to specific applications. The separate segments of the distributed amplifier separated by the signal inverting means operate in opposed phase but the signals output to the load add in phase thus providing push-pull operation.
    Type: Grant
    Filed: March 23, 1988
    Date of Patent: January 10, 1989
    Inventors: Michael E. Gruchalla, David C. Koller
  • Patent number: 4591941
    Abstract: A double insulating protected system for use in coupling an instrumentation system to a remote power source so as to test an experimental system without posing life-threatening hazards. Connection between the instrumentation system and power source is accomplished by a pair of cascaded isolating transformers, with the connections between the two transformers being inaccessable, such as by a separate housing. The instrumentation system equipment ground is coupled to the experimental system equipment ground via a drain conductor so as to reference the former system to the same potential as that of the latter. The system provides a double insulation system such that a primary-to-secondary, primary-to-frame, or secondary-to-frame fault occurring in either of the transformers, or similar faults in the instrumentation system, will not result in a life-threatening situation to the system user.
    Type: Grant
    Filed: September 21, 1983
    Date of Patent: May 27, 1986
    Assignee: EG&G Washington Analytical Services Center Inc.
    Inventors: Michael E. Gruchalla, David C. Koller