Patents by Inventor Michael E. Llewellyn

Michael E. Llewellyn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200100659
    Abstract: Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 2, 2020
    Inventors: Gabriel Nestor Sanchez, Scott L. Delp, Mark J. Schnitzer, Michael E. Llewellyn
  • Patent number: 10583309
    Abstract: A variety of methods, devices, systems and arrangements are implemented for stimulation of the peripheral nervous system. Consistent with one embodiment of the present invention, method is implemented in which light-responsive channels or pumps are engineered in a set of motor units that includes motor units of differing physical volumes. Optical stimuli are also provided to the light-responsive channels or pumps at an optical intensity that is a function of the size of motor units to be recruited. In certain implementations, the intensity of the optical stimuli is increased so as to recruit increasingly larger motor units.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: March 10, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl A. Deisseroth, Scott L. Delp, Michael E. Llewellyn, Christine A. McLeavey Payne
  • Patent number: 10499797
    Abstract: Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: December 10, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Gabriel Nestor Sanchez, Scott L. Delp, Mark J. Schnitzer, Michael E. Llewellyn
  • Publication number: 20170072219
    Abstract: A variety of methods, devices, systems and arrangements are implemented for stimulation of the peripheral nervous system. Consistent with one embodiment of the present invention, method is implemented in which light-responsive channels or pumps are engineered in a set of motor units that includes motor units of differing physical volumes. Optical stimuli are also provided to the light-responsive channels or pumps at an optical intensity that is a function of the size of motor units to be recruited. In certain implementations, the intensity of the optical stimuli is increased so as to recruit increasingly larger motor units.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 16, 2017
    Inventors: Karl A. Deisseroth, Scott L. Delp, Michael E. Llewellyn, Christine A. McLeavey Payne
  • Patent number: 9308392
    Abstract: A variety of methods, devices, systems and arrangements are implemented for stimulation of the peripheral nervous system. Consistent with one embodiment of the present invention, method is implemented in which light-responsive channels or pumps are engineered in a set of motor units that includes motor units of differing physical volumes. Optical stimuli are also provided to the light-responsive channels or pumps at an optical intensity that is a function of the size of motor units to be recruited. In certain implementations, the intensity of the optical stimuli is increased so as to recruit increasingly larger motor units.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: April 12, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Scott L. Delp, Michael E. Llewellyn, Christine A. McLeavey Payne
  • Patent number: 9101759
    Abstract: A variety of methods, devices, systems and arrangements are implemented for stimulation of the peripheral nervous system. Consistent with one embodiment of the present invention, method is implemented in which light-responsive channels or pumps are engineered in a set of motor units that includes motor units of differing physical volumes. Optical stimuli are also provided to the light-responsive channels or pumps at an optical intensity that is a function of the size of motor units to be recruited. In certain implementations, the intensity of the optical stimuli is increased so as to recruit increasingly larger motor units.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: August 11, 2015
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Scott L. Delp, Michael E. Llewellyn, Karl Deisseroth, Christine A. McLeavey Payne
  • Publication number: 20150141846
    Abstract: Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 21, 2015
    Inventors: Gabriel Nestor Sanchez, Scott L. Delp, Mark J. Schnitzer, Michael E. Llewellyn
  • Patent number: 8897858
    Abstract: Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: November 25, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior Univerity
    Inventors: Gabriel Nestor Sanchez, Scott L. Delp, Mark J. Schnitzer, Michael E. Llewellyn
  • Publication number: 20140324133
    Abstract: A variety of methods, devices, systems and arrangements are implemented for stimulation of the peripheral nervous system. Consistent with one embodiment of the present invention, method is implemented in which light-responsive channels or pumps are engineered in a set of motor units that includes motor units of differing physical volumes. Optical stimuli are also provided to the light-responsive channels or pumps at an optical intensity that is a function of the size of motor units to be recruited. In certain implementations, the intensity of the optical stimuli is increased so as to recruit increasingly larger motor units.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 30, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl A. Deisseroth, Scott L. Delp, Michael E. Llewellyn, Christine A. McLeavey Payne
  • Publication number: 20130289675
    Abstract: A variety of methods, devices, systems and arrangements are implemented for stimulation of the peripheral nervous system. Consistent with one embodiment of the present invention, method is implemented in which light-responsive channels or pumps are engineered in a set of motor units that includes motor units of differing physical volumes. Optical stimuli are also provided to the light-responsive channels or pumps at an optical intensity that is a function of the size of motor units to be recruited. In certain implementations, the intensity of the optical stimuli is increased so as to recruit increasingly larger motor units.
    Type: Application
    Filed: March 25, 2013
    Publication date: October 31, 2013
    Inventors: Karl Deisseroth, Scott L. Delp, Michael E. Llewellyn, Christine McLeavey
  • Publication number: 20120143065
    Abstract: Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device.
    Type: Application
    Filed: November 28, 2011
    Publication date: June 7, 2012
    Inventors: Gabriel Nestor Sanchez, Scott L. Delp, Mark J. Schnitzer, Michael E. Llewellyn
  • Patent number: 8068899
    Abstract: Biological thick tissue such as skeletal and cardiac muscle is imaged by inserting a probe into the tissue and scanning the tissue at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without staining or otherwise introducing a foreign element used to generate or otherwise increase the sensed light. The probe includes a light generator for generating light pulses that are directed towards structures located within the thick tissue. The light pulses interact with intrinsic characteristics of the structures to generate a signal such as SHG or intrinsic fluorescence. Reliance on intrinsic characteristics of the structures is particularly useful for applications in which the introduction of foreign substances to the thick tissue is undesirable.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: November 29, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michael E. Llewellyn, Robert J. Barretto, Scott L. Delp, Mark J. Schnitzer
  • Publication number: 20110166632
    Abstract: A variety of methods, devices, systems and arrangements are implemented for stimulation of the peripheral nervous system. Consistent with one embodiment of the present invention, method is implemented in which light-responsive channels or pumps are engineered in a set of motor units that includes motor units of differing physical volumes. Optical stimuli are also provided to the light-responsive channels or pumps at an optical intensity that is a function of the size of motor units to be recruited. In certain implementations, the intensity of the optical stimuli is increased so as to recruit increasingly larger motor units.
    Type: Application
    Filed: July 8, 2009
    Publication date: July 7, 2011
    Inventors: Scott L. Delp, Michael E. Llewellyn, Karl Deisseroth, Christine Mcleavey
  • Publication number: 20090012406
    Abstract: Biological thick tissue such as skeletal and cardiac muscle is imaged by inserting a probe into the tissue and scanning the tissue at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without staining or otherwise introducing a foreign element used to generate or otherwise increase the sensed light. The probe includes a light generator for generating light pulses that are directed towards structures located within the thick tissue. The light pulses interact with intrinsic characteristics of the structures to generate a signal such as SHG or intrinsic fluorescence. Reliance on intrinsic characteristics of the structures is particularly useful for applications in which the introduction of foreign substances to the thick tissue is undesirable.
    Type: Application
    Filed: July 1, 2008
    Publication date: January 8, 2009
    Inventors: Michael E. Llewellyn, Robert J. Barretto, Scott L. Delp, Mark J. Schnitzer