Patents by Inventor Michael Ekart

Michael Ekart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080114138
    Abstract: A process to produce polyester product from alkylene oxide and carboxylic acid. More specifically this process relates to a process to produce polyethylene terephthalate where terephthalic acid and ethylene oxide are reacted to form a partially esterified terephthalic acid product and then the partially esterified product is further reacted with ethylene glycol to produce polyethylene terephthalate.
    Type: Application
    Filed: January 15, 2008
    Publication date: May 15, 2008
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Alan White, Michael Ekart, Larry Windes, Richard Bonner, Alan Wonders
  • Publication number: 20070270533
    Abstract: A process for crystallizing a polyester polymer by introducing a molten polyester polymer, such as a polyethylene terephthalate polymer, into a liquid medium at a liquid medium temperature greater than the Tg of the polyester polymer, such as at a temperature ranging from 100° C. to 190° C., and allowing the molten polyester polymer to reside in the liquid medium for a time sufficient to crystallize the polymer under a pressure equal to or greater than the vapor pressure of the liquid medium. A process flow, underwater cutting process, crystallization in a pipe, and a separator are also described.
    Type: Application
    Filed: July 31, 2007
    Publication date: November 22, 2007
    Inventors: Michael Ekart, Mary Jernigan, Cory Wells, Larry Windes
  • Publication number: 20070135614
    Abstract: A process for crystallizing a polyester polymer by introducing a molten polyester polymer, such as a polyethylene terephthalate polymer, into a liquid medium at a liquid medium temperature greater than the Tg of the polyester polymer, such as at a temperature ranging from 100° C. to 190° C., and allowing the molten polyester polymer to reside in the liquid medium for a time sufficient to crystallize the polymer under a pressure equal to or greater than the vapor pressure of the liquid medium. A process flow, underwater cutting process, crystallization in a pipe, and a separator are also described.
    Type: Application
    Filed: January 31, 2007
    Publication date: June 14, 2007
    Inventors: Michael Ekart, Mary Jernigan, Cory Wells, Larry Windes
  • Publication number: 20060235188
    Abstract: Spheroidal polyester polymer particles, as well as preforms and stretch blow molded bottles made from the spheroidal particles, are provided which have: A) an It.V. of at least 0.72 dL/g, and either B) at least two melting peaks (on a DSC first heating scan), wherein one of said at least two melting peaks is a low peak melting point having a peak temperature within a range of 140° C. to 220° C.
    Type: Application
    Filed: June 16, 2006
    Publication date: October 19, 2006
    Inventors: Stephen Weinhold, Frederick Colhoun, Michael Ekart, Benjamin Gamble
  • Publication number: 20060149027
    Abstract: A melt phase process for making a polyester polymer melt phase product by adding an antimony containing catalyst to the melt phase, polycondensing the melt containing said catalyst in the melt phase until the It.V. of the melt reaches at least 0.75 dL/g. Polyester polymer melt phase pellets containing antimony residues and having an It.V. of at least 0.75 dL/g are obtained without solid state polymerization. The polyester polymer pellets containing antimony residues and having an It.V. of at least 0.70 dL/g obtained without increasing the molecular weight of the melt phase product by solid state polymerization are fed to an extruder, melted to produce a molten polyester polymer, and extruded through a die to form shaped articles. The melt phase products and articles made thereby have low b* color and/or high L* brightness, and the reaction time to make the melt phase products is short.
    Type: Application
    Filed: February 24, 2006
    Publication date: July 6, 2006
    Inventors: Mary Jernigan, Michael Ekart, Richard Bonner
  • Publication number: 20060149026
    Abstract: A melt phase process for making a polyester polymer melt phase product by adding an antimony containing catalyst to the melt phase, polycondensing the melt containing said catalyst in the melt phase until the It.V. of the melt reaches at least 0.75 dL/g. Polyester polymer melt phase pellets containing antimony residues and having an It.V. of at least 0.75 dL/g are obtained without solid state polymerization. The polyester polymer pellets containing antimony residues and having an It.V. of at least 0.70 dL/g obtained without increasing the molecular weight of the melt phase product by solid state polymerization are fed to an extruder, melted to produce a molten polyester polymer, and extruded through a die to form shaped articles. The melt phase products and articles made thereby have low b* color and/or high L* brightness, and the reaction time to make the melt phase products is short.
    Type: Application
    Filed: February 24, 2006
    Publication date: July 6, 2006
    Inventors: Mary Jernigan, Michael Ekart, Richard Bonner
  • Publication number: 20060047102
    Abstract: Spheroidal polyester polymer particles, as well as preforms and stretch blow molded bottles made from the spheroidal particles, are provided which have: A) an It.V. of at least 0.72 dL/g, and either B) at least two melting peaks (on a DSC first heating scan), wherein one of said at least two melting peaks is a low peak melting point having a peak temperature within a range of 140° C. to 220° C.
    Type: Application
    Filed: December 21, 2004
    Publication date: March 2, 2006
    Inventors: Stephen Weinhold, Frederick Colhoun, Michael Ekart, Benjamin Gamble
  • Publication number: 20060046004
    Abstract: A bulk of polyester polymer particles comprising polyester polymer comprising greater than 75% virgin polyester polymer, the particles having: A) an It.V. of at least 0.72 dl/g, and B) 10 ppm or less of residual acetaldehyde; and C) at least two melting peaks, wherein one of said at least two melting peaks is a low peak melting point within a range of 140° C. to 220° C. and having a melting endotherm area of at least the absolute value of 1 J/g. The particles may also have a degree of crystallinity within a range of 20% and a maximum degree of crystallinity Tcmax defined by the equation: Tcmax=50%?CA?OH where CA is the total mole % of all carboxylic acid residues other than terephthalic acid residues, based on 100 mole % of carboxylic acid residues, and OH is the total mole % of all hydroxyl functional compound residues other than ethylene glycol residues, based on 100 mole % of hydroxyl functional compounds residues.
    Type: Application
    Filed: December 21, 2004
    Publication date: March 2, 2006
    Inventors: Michael Ekart, Frederick Colhoun, Mary Jernigan, Stephen Weinhold, Rodney Armentrout
  • Publication number: 20060042113
    Abstract: A process for feeding a slurry of thermoplastic synthetic polymer particles such as polyethylene terephthalate homopolymers and copolymers in combination with a liquid such as water at a liquid temperature greater than the normal boiling point of the liquid, under a pressure greater than the vapor pressure of the liquid at the liquid temperature, into a separation zone such as a centrifugal dryer, and within the separation zone: a. separating the liquid from the particles, and b. drying the particles; while under a high pressure equal to or greater than the vapor pressure of the liquid. There is also provided a process for decoupling the dried particles from the separation zone to an atmosphere having a pressure less than the vapor pressure of the liquid while maintaining the vapor pressure of the particles prior to decoupling equal to or above the vapor pressure of the liquid at the liquid temperature.
    Type: Application
    Filed: May 23, 2005
    Publication date: March 2, 2006
    Inventors: Michael Ekart, Andrew Hudson, Raymond Isaac, Luciano Samitier
  • Publication number: 20060047103
    Abstract: In one embodiment, there is provided a process comprising introducing polyester polymer particles containing residual acetaldehyde into a vessel at a temperature within a range of 130° C. to 195° C. to form a bed of particles within the vessel, flowing a gas through at least a portion of the particle bed, and withdrawing finished particles from the vessel having a reduced amount of residual acetaldehyde. In this process, it is not necessary to introduce a hot flow of gas at high flow rates otherwise required to heat up cool particles to a temperature sufficient to strip acetaldehyde. Rather, this process provides a benefit in that, if desired, gas introduced into the vessel at low flow rates and low temperatures can nevertheless effectively strip acetaldehyde in a reasonable time because the hot particles quickly heat a the gas to the particle temperature.
    Type: Application
    Filed: December 21, 2004
    Publication date: March 2, 2006
    Inventors: Rodney Armentrout, Frederick Colhoun, Michael Ekart, Bruce DeBruin
  • Publication number: 20050203267
    Abstract: A melt phase process for making a polyester polymer melt phase product by adding an antimony containing catalyst to the melt phase, polycondensing the melt containing said catalyst in the melt phase until the It.V. of the melt reaches at least 0.75 dL/g. Polyester polymer melt phase pellets containing antimony residues and having an It.V. of at least 0.75 dL/g are obtained without solid state polymerization. The polyester polymer pellets containing antimony residues and having an It.V. of at least 0.70 dL/g obtained without increasing the molecular weight of the melt phase product by solid state polymerization are fed to an extruder, melted to produce a molten polyester polymer, and extruded through a die to form shaped articles. The melt phase products and articles made thereby have low b* color and/or high L* brightness, and the reaction time to make the melt phase products is short.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 15, 2005
    Inventors: Mary Jernigan, Michael Ekart, Richard Bonner
  • Publication number: 20050197468
    Abstract: A process to produce polyester product from alkylene oxide and carboxylic acid. More specifically this process relates to a process to produce polyethylene terephthalate where terephthalic acid and ethylene oxide are reacted to form a partially esterified terephthalic acid product and then the partially esterified product is further reacted with ethylene glycol to produce polyethylene terephthalate.
    Type: Application
    Filed: March 4, 2004
    Publication date: September 8, 2005
    Inventors: Alan White, Michael Ekart, Larry Windes, Richard Bonner, Alan Wonders
  • Publication number: 20050196566
    Abstract: There is now provided a polyester polymer particle having an It.V., a surface, and a center, wherein the It.V. at the surface of the particle is less than 0.25 dL/g higher than the It.V. at the center of the particle. The polyester polymer particle is desirably crystalline to prevent the particles from sticking to each other while drying, and desirably contains less than 10 ppm acetaldehyde. A polyester container, preferably a preform or beverage bottle, is made by feeding crystallized polyester particles having an It.V. of at least 0.70 dL/g to an extrusion zone, melting the particles in the extrusion zone to form a molten polyester polymer composition, and forming a sheet or a molded part from extruded molten polyester polymer, wherein at least a portion of the polyester particles have an It.V. at their surface which does not vary from their It.V. at their center by more than 0.25 dL/g, and the particles have not been solid state polymerized. Such polyester compositions have an It.V.
    Type: Application
    Filed: March 8, 2004
    Publication date: September 8, 2005
    Inventors: Frederick Colhoun, Michael Ekart, Mary Jernigan, Stephen Weinhold
  • Publication number: 20050154183
    Abstract: A process for crystallizing a polyester polymer by introducing a molten polyester polymer, such as a polyethylene terephthalate polymer, into a liquid medium at a liquid medium temperature greater than the Tg of the polyester polymer, such as at a temperature ranging from 100° C. to 190° C., and allowing the molten polyester polymer to reside in the liquid medium for a time sufficient to crystallize the polymer under a pressure equal to or greater than the vapor pressure of the liquid medium. A process flow, underwater cutting process, crystallization in a pipe, and a separator are also described.
    Type: Application
    Filed: November 10, 2004
    Publication date: July 14, 2005
    Inventors: Michael Ekart, Mary Jernigan, Cory Wells, Larry Windes
  • Publication number: 20050065318
    Abstract: A process for thermally crystallizing a polyester polymer by introducing pellets into a liquid medium having a temperature of at least 140° C. within a liquid medium zone and crystallizing the submerged pellets at or above the vapor pressure of the liquid medium without increasing the molecular weight of the pellets, and while the pressure on at least a portion of the pellets is equal to or greater than the vapor pressure of the liquid medium, separating at least a portion of said pellets and at least a portion of the liquid medium from each other. The crystallization is desirably conducted in the liquid medium zone without mechanically induced agitation. Optionally, the pellets are formed by an underfluid pelletizer.
    Type: Application
    Filed: September 18, 2003
    Publication date: March 24, 2005
    Inventors: Mary Jernigan, Michael Ekart, Luciano Samitier, Cory Wells, Larry Windes