Patents by Inventor Michael F. Carolan

Michael F. Carolan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5599383
    Abstract: Tubular solid-state membrane modules for separating oxygen from an oxygen-containing gaseous mixture which provide improved pneumatic and structural integrity and ease of manifolding. The modules are formed from a plurality of tubular membrane units, each membrane unit which comprises a channel-free porous support having connected through porosity which is in contact with a contiguous dense mixed conducting oxide layer having no connected through porosity. The dense mixed conducting oxide layer is placed in flow communication with the oxygen-containing gaseous mixture to be separated and the channel-free porous support of each membrane unit is placed in flow communication with one or more manifolds or conduits for discharging oxygen which has been separated from the oxygen-containing gaseous mixture by permeation through the dense mixed conducting oxide layer of each membrane unit and passage into the manifolds or conduits via the channel-free porous support of each membrane unit.
    Type: Grant
    Filed: March 13, 1995
    Date of Patent: February 4, 1997
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Paul N. Dyer, Jeffrey D. Bright, Michael F. Carolan, Eric Minford, Robin E. Richards, Steven L. Russek, Dale M. Taylor, Merrill A. Wilson
  • Patent number: 5569633
    Abstract: The present invention relates to surface catalyzed ion transport membranes which demonstrate superior oxygen flux. The membranes comprise a dense multicomponent metallic oxide layer having a first surface and a second surface wherein the first surface is coated with a catalyst such as a metal or an oxide of a metal selected from Groups II, V, VI, VII, VIII, IX, X, XI, XV and the F Block lanthanides of the Periodic Table of the Elements. One or more porous layers formed from a mixed conducting multicomponent metallic oxide or a material which is not mixed conducting under process operating conditions may be formed contiguous to the second surface of the dense layer. The claimed membranes are capable of separating oxygen from oxygen-containing gaseous mixtures.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: October 29, 1996
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael F. Carolan, Paul N. Dyer
  • Patent number: 5534471
    Abstract: The present invention relates to surface catalyzed ion transport membranes which demonstrate superior oxygen flux. The membranes comprise a porous mixed conducting multicomponent metallic oxide layer having a first surface onto which a catalyst is deposited and a second surface which is contiguous with a dense mixed conducting multicomponent metallic oxide layer. Suitable catalysts to be deposited onto the porous mixed conducting layer include one or more metals or oxides of metals selected from Groups II, V, VI, VII, VIII, IX, X, XI, XV and the F Block lanthanides of the Periodic Table of the Elements. The claimed membranes are capable of separating oxygen from oxygen-containing gaseous mixtures.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: July 9, 1996
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael F. Carolan, Paul N. Dyer
  • Patent number: 5332597
    Abstract: The present invention is a method for manufacturing inorganic membranes which are capable of separating oxygen from oxygen-containing gaseous mixtures. The membranes comprise a porous composite of a thin layer of a multicomponent metallic oxide which has been deposited onto a porous support wherein the pores of the multicomponent metallic oxide layer are subsequently filled or plugged with a metallic-based species. The inorganic membranes are formed by depositing a porous multicomponent metallic oxide layer onto the porous support to form a porous composite having a network of pores capable of transporting gases. The network of pores are plugged or filled by organometallic vapor infiltration to form an inorganic membrane having essentially no through porosity.
    Type: Grant
    Filed: November 9, 1992
    Date of Patent: July 26, 1994
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael F. Carolan, Paul N. Dyer, Stephen M. Fine, Alexander Makitka, III, Robin E. Richards, Leslie E. Schaffer
  • Patent number: 5269822
    Abstract: The invention is a process for recovering oxygen from an oxygen-containing gaseous mixture containing one or more components selected from water, carbon dioxide or a volatile hydrocarbon which process utilizes ion transport membranes comprising a multicomponent metallic oxide containing barium. The process utilizes a temperature regime which overcomes problems associated with degradation of barium-containing multicomponent oxides caused by carbon dioxide.
    Type: Grant
    Filed: September 1, 1992
    Date of Patent: December 14, 1993
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael F. Carolan, Paul N. Dyer, Stephen M. Fine, James M. LaBar, Sr., Robert M. Thorogood
  • Patent number: 5261932
    Abstract: The invention is a process for recovering oxygen from an oxygen-containing gaseous mixture containing one or more components selected from water, carbon dioxide or a volatile hydrocarbon which process utilizes ion transport membranes comprising a multicomponent metallic oxide containing strontium, calcium or magnesium. The process utilizes a temperature regime which overcomes problems associated with degradation of strontium-, calcium- and magnesium-containing multicomponent oxides caused by carbon dioxide.
    Type: Grant
    Filed: September 1, 1992
    Date of Patent: November 16, 1993
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael F. Carolan, Paul N. Dyer, James M. LaBar, Sr., Robert M. Thorogood
  • Patent number: 5240473
    Abstract: This invention relates to a process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture which contains water, carbon dioxide or volatile hydrocarbons. The process utilizes a class of ion transport membranes formed from multicomponent metallic oxides wherein permeance of such membranes had been believed to be permanently degraded by water and the like under conventional process operating temperatures. This invention provides a continuous process for restoring oxygen permeance of such membranes caused by deleterious interaction between the membrane and components such as carbon dioxide, water or hydrocarbons at elevated process temperatures.
    Type: Grant
    Filed: September 1, 1992
    Date of Patent: August 31, 1993
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael F. Carolan, Paul N. Dyer, James M. LaBar, Sr., Robert M. Thorogood